The use of the optimized standard uptake value - SUVopt - in the interpretation of FDG PET-CT IN Adrenal Gland and Pleural Based Malignancy
Main Article Content
Abstract
Goal: The purpose of this study was to demonstrate that standard uptake value (SUV) calculations standardized to normal liver parenchyma, and utilizing previously defined thresholds for differentiating benign and malignant disease, yield results superior to non-standardized SUVs. This methodology can be applied to all fluorodeoxyglucose positron emission tomography (FDG PET) interpretations.
Methods: Patients (n=132) with a history of primary lung carcinoma were studied with FDG PET to determine the presence or absence of metastatic disease. Images were assessed using semi-quantitative analysis with SUVmax generation. All SUVs were calculated with and without individualized correction for normal liver parenchymal uptake and the standard uptake value optimized (SUVopt) was derived. Results of corrected and un-corrected SUVs were compared with the pathologic results in two clinical disease categories: 1. pleural metastases (n= 87), and 2. adrenal metastases (n= 45).
Results: The sensitivity and specificity for corrected versus uncorrected SUVs for pleural metastases were: 95.6% versus 93.8%, and 77.0% versus 42.1%, respectively. For adrenal metastases the results were: 94.5% versus 91.6%, and 88.9% versus 45.0%, respectively.
Conclusions: In patients with primary lung cancer, the utilization of SUVs corrected for the normal liver parenchyma provide more accurate results in defining the presence or absence of metastatic disease to pleura and adrenal glands.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Warburg, O. On the origin of cancer cells. Science. 1956; 1234: 309-314.
3. Bustamante, E. and Pedersen, P. High aerobic glycolysis of rat hepatoma cells in culture: role of mitochondrial hexokinase. Proc. Natl. Aca. Science USA. 1977; 74: 3735-3739.
4. Hillner, B.E.; Siegel, B.A.; Shields, A.F.; Liu, D.; Gareen, I.F.; Hunt E.; Coleman, R.E. Relationship between cancer type and impact of PET and PET/CT on intended management: findings of the National Oncologic PET Registry. J. Nucl. Med. 2008; 49: 1928-1935.
5. Fletcher, J.W.; Djulbegovic, B.; Soares, H.P.; Siegel, B.A.; Lowe, V.J.; Lyman, G.H.; Coleman, R.E.; Wahl, R,; Paschold, J.C.; Avril, N. Recommendations on the use of 18F-FDG PET in oncology. J. Nucl. Med. 2008; 49: 480-508.
6. Lowe, V.J.; Fletcher, J.W.; Gobar, L.; Lawson, M.; Kirchner, P.; Valk, P.; Karis, J.; Hubner, K.; Delbeke, D.; Heiberg, E.V. Prospective investigation of positron emission tomography in lung nodules. J. Clin. Oncol. 1998; 16: 1075-1084.
7. Keyes, J.W. SUV: Standard uptake of silly useless value? J Nucl Med. 1995; 36: 1836-1839.
8. Turkington, T.G.; Coleman, R.E. Clinical oncologic Positron Emission Tomography: An Introduction. Semin Roentgenol. 2002; 37: 102-109.
9. Kinahan, P.E.; Fletcher, J.W. Positron emission tomography-computed tomography standardized uptake values (SUVs) in clinical practice and assessing response to therapy. Semin Ultrasound CT MR. 2010; 31: 496-505.
10. Gupta, N.C.; Rogers, J.S.; Graber, G.M.; Gregory, J.L.; Waheed, U.; Mullet, D.; Atkins, M. Clinical role of F-18 fluorodeoxyglucose positron emission tomography imaging in patients with lung cancer and suspected malignant pleural effusion. Chest. 2002; 122: 1918-1924.
11. Bagheri, B.; Maurer, A.H.; Cone, L.; Doss, M.; Adler, L. Characterization of the normal adrenal gland with 18F-FDG PET/CT. J. Nucl. Med.; 2004; 45: 1340-1343.
12. Tomasi, G.; Turkheimer, F.; Aboagye, E. Importance of quantification for the analysis of PET data in oncology: review of current methods and trends for the future. Mol Imaging Biol. 2012; 14: 131-146.
13. Boellaard, R.; O'Doherty, M.J.; Weber, W.A.; Mottaghy, F.M.; L:onsdale, M.N.; FDG PET and PET/CT: EANM procedural guidelines for tumor PET imaging: version 1.0. European Journal of Nuclear Medicine and Molecular Imaging. 2010; 37: 662- 671.
14. Boellaard, R. Need for standardization of 18F-FDG PET/CT for treatment response assessments. J. Nucl. Med. 2011; 52: 93S-100S.
15. Wahl, R.L.; Jacene, H.; Kasamon, Y.; Lodge, M. A. From RECIST to PERCIST: evolving considerations for PET response criteria in solid tumors. J. Nucl. Med. 2009; 50: 122S-150S.
16. Laffon, E.; Adhoute, X.; de Clermont, H.; Marthon, R. Is liver SUV stable over time in 18F-FDG PET imaging? Journal of Nuclear Medicine Technology. 2011; 39: 258-263.
17. Boellaard, R. Standards for PET image acquisition and quantitative data analysis. J Nucl Med. 2009; 50: 11S-20S.
18. Ramos, C.D.; Erdi, Y.E.; Gonen, M.; Riedel, E.; Yeung, H.W.D.; Macapinlac, H.A.; Chisin, R.; Larson, S.M. FDG-PET standardized uptake values in normal anatomical structures using iterative reconstruction attenuation correction and filtered back projection. Eur J Nucl Med. 2001; 28: 155-164.
19. Delbeke, D.; Coleman, R.E.; Guiberteau, M.J.; Brown, M.L.; Royal, H.D.; Siegel, B.; Townsend, D.W.; Berland, L.L.; Parker, J.A.; Hubner, K. Procedural guidelines for tumor imaging with 18F-FDG PET/CT 1.0. J. Nucl. Med. 2006, 47, 885.
20. Black, R.R.; Barentz, J.; Howell, D.; Bostwick, D.; Strum, S. Optimized 18F-FDG PET-CT method to improve accuracy of diagnosis of metastatic cancer. Diagnostics. 2023; 13: 1580-1595.
21. Otsuka, H.; Graham, N.M.; Kubo, A.; Nishitani, H. The effect of oral contrast on large bowel activity in FDG-PET/CT. Ann. Nucl. Med. 2005; 19: 101-108.
22. Vansteenkiste, J.F.; Stroobants, S.G.; De Leyn, P.R.; Dupont, P.; Maes, A.; Deneffe, G.J.; Nackerts, K.L.; Verschakelen, J.; Lerut, T. Lymph node staging in non small cell lung cancer with FDG PET scan: a prospective study on 690 lymph node stations from 68 patients. J Clin Oncol. 1998; 16: 2142-2149.
23. Parmar, C.; Grossmann, P.; Bussink, J.; Lambin, P.; Aerts, H. Machine learning methods for quantitative biomarkers. Scientific Reports. 2015 Aug 17; 5:13087.
24. Hawn Lee, S.; Choi, C.W.; Gab-Jung, K.; Park, C.S.; Han, Y.; Park, S.W.; Yoo, S.J. Radiomics in oncology: method and clinical applications. Journal of Magnetics. 2020; 25: 110-116.
25. Jha, A.K.; Mithun, S.; Purandare, N.C.; Kumar, R.; Rangarajan,V.; Wee, L.; Dekker, A. Radiomics: A quantitative imaging biomarker in precision oncology. Nuclear Medicine Communications. 2022; 43: 483-493.
26. Vial, A.; Stirling, D.; Field, M.; Ros, M.; Ritz, C.; Carolan, M.; Holloway, L.; Miller, A.A. The role of deep learning and radiomic feature extraction in cancer-specific Predictive modelling: a review. Translational Cancer Research. 2018; 7: 803-816.
27. Sepehri, S.; Tankyeyvch, O.; Upadhaya, T.; Visvikis, D.; Hatt, M.; Cheze Le Rest, C. Comparison and fusion of machine learning algorithms for prospective validation of PET/CT radiomic feature prognostic value in stage II-III non-small cell lung cancer. Diagnostics. 2021. 11, 675.
28. Borrelli, P.; Gongora, J.; Kaboteh, R.; Ulen, J.; Enqvist, O.; Tragardh, E.; Edenbrandt, L. AI-based Quantification of PET/CT lesions is associated with survival in patients with lung cancer. Research Square. 2021. Doi.org/10.21203/rs.3.rs:305562/v1.
29. Graham, M.M.; Badawi, R.D.; Wahl, R.L. Variations in PET/CT methodology for oncologic imaging at U.S. academic centers: an imaging response assessment team survey. J. Nucl. Med. 2011; 52: 311-317.
30. Patel, K.; Hadar, N.; Lee, J.; Siegel, B.A.; Hillner, B.E.; Lau J. The lack of evidence for PET or PET/CT surveillance of patients with treated lymphoma, colorectal cancer, and head and neck cancer: a systematic review. J. Nucl. Med. 2013; 54: 1-10.
31. Boellaard, R.; Oyen, W.J.; Hoekstra, .C.J.; Hoekstra, O.S.; Visser, E.P.; Willemsen, A.T.; Arends, B.; Verziilbergen, F.J.; Zijlstra, J.; Paans, A.M. The Netherlands protocol for standardization and quantification of FDG whole body PET studies in multicenter trials. Eur J Nucl Med Mol Imaging. 2008; 35: 2320-2333.
32. Adams, M.C.; Turkington, T.G.; Wilson, J.M.; Wong, T.Z. A systematic review of the factors affecting accuracy of SUV measurements. Am. J. Roentgenol. 2010; 195: 310-320.
33. Geworski, L.; Knoop, B.O.; de Wit, M.; Ivancevic, V.; Bares, R.; Munz, D.L. Multicenter comparison of calibration and cross calibration of PET scanners. J. Nucl. Med. 2002; 43: 635-639.
34. Bunyaviroch, T.; Turkinton, T.G.; Wong, T.Z.; Wilson, J.W.; Colsher, J.G.; Coleman RE. Quantitative effects of contrast enhanced CT attenuation correction on PET SUV measurements. Mole Imaging Biol. 2008; 10: 107-113.
35. Benz, M.R.; Evilevitch, V.; Allen-Auerbach, M.S.; Eilber, F.C.; Phelps, M.E.; Czernin, J.; Weber, W.A. Treatment monitoring by 18F-FDG PET/CT in patients with sarcomas: Interobserver variability of quantitative parameters in treatment induced changes in histopathologically responding and nonresponding tumors. J. Nucl. Med. 2008; 49: 1038-1046.
36. Kelly, M. EQ-PET: Achieving NEMA-referenced SUV Across Technologies. White paper. Siemens Healthcare Sector. 2015, 1-16. Available from: https://usa.healthcare.siemens.com/molecularimaging/eq-pet
37. Kanstrup, I.L.; Klausen, T.L.; Bojsen-Moller, J.; Magnusson, P.; Zerahn, B. Variability and reproducibility of hepatic FDG uptake measured as SUV as well as tissue-to-blood background ratio using positron emission tomography in healthy humans. Clin Physiol Funct Imaging. 2009; 29: 108-113.
38. Paquet, N.; Albert, A.; Foldart, J.; Hustinix, R. Within-patient variability of 18 (F)-FDG standardized uptake values in normal tissues. J. Nucl. Med. 2004; 45: 784-788.
39. Boktor, R. R.; Walker, G.; Stacey, R.; Gledhill, S.; Pitman, A. G. Reference range for intra-patient variability in blood pool and liver SUV for 18F-FDG PET. J Nucl Med. 2013; 54: 677-682.
40. Cherry, S.R.; Sorenson, J.A.; Phelps, M.E. Physics in Nuclear Medicine Philadelphia, PA Saunders/Elsevier Science; 2003: 423-490.
41. Tylski, P.; Stute, S.; Grotus, N.; Doyeux, K.; Hapdey, S.; Gardin, I.; Vanderlinden, B.; Buvat, I.Comparative assessment of methods for estimating tumor volume and standardized uptake value in 18F-FDG PET. J. Nucl, Med. 2010; 51: 268-276.
42. Young, H.; Baum, R.; Cremerius, U.; Herholz, K.; Hoekstra, O.; Lammerstsma, A.; Pruim, J.; Price Measurement of clinical and subclinical tumor response using [18 F] -fluorodeoxyglucose and positron emission tomography: review and 1999 recommendations. European Organization for Research and Treatment of Cancer (EORTC). European J Cancer. 1999; 35: 1773-1782.
43. Skougaard, K.; Nielsen, D.; Jensen, B.V.; Hendel, H.W. Comparison of EORTC criteria and PERCIST for PET/CT response evaluation of patients with metastatic colorectal cancer treated with irinotecan and cetuximab. J. Nucl. Med. 2013; 54: 1026-1031.
44. Wade, A. Derivation versus validation. Arch. Dis. Child. 2000; 83: 459-460.