Value of amide proton transfer magnetic resonance imaging and apparent diffusion coefficient in grading of meningioma
Main Article Content
Abstract
Background: Meningioma is the most common intracranial extra-axial tumor in general populations with world health organization (WHO) grading ranging from grade 1 to grade 3 depending on subtypes which indicate the prognosis and management plan. Amide proton transfer (APT) is the new molecular MRI technique based on chemical exchange saturation transfer mechanism while apparent diffusion coefficient (ADC) is a conventional technique measuring of the magnitude of diffusion of water molecule within tissue.
Aim: To study whether the APT and ADC values correlate with meningioma WHO grading.
Materials and methods: A cross-sectional study was conducted at Department of Radiology, Srinagarind Hospital, Faculty of Medicine, Khon Kaen University, Thailand between July 2021 and December 2021. We performed MRI in patients with extra-axial tumors using conventional, APT and DWI sequences. Two experienced neuroradiologists placed the ROIs within the solid portion of the tumor those showed highest APT value and lowest ADC value in consensus manner and blinded to clinical data. The patients were later classified into groups based on pathological results. APT and ADC values were compared between groups.
Results: A total 23 patients with presumptive diagnosis of meningioma on pre-operative MRI were included with 20 patients who had pathological confirmed meningioma (17 patients with typical meningiomas WHO grade 1, two patients with atypical meningiomas WHO grade 2 and one anaplastic meningioma WHO grade 3). The mean and maximal APT values in an atypical meningioma group (WHO grade 2-3) were significantly higher than in a typical meningioma group with p-values of 0.023 and 0.024, respectively. There was no significant difference in mean and minimum ADC values and ADC ratios among the typical and atypical meningioma groups. The multivariate logistic regression analysis showed that higher APT values increased relative risk of high-grade tumors by a factor of 2.51 using mean APT (95%CI 0.81-7.74, p value 0.001, area under ROC curve 0.9097) and 2.48 using maximum APT (95%CI 0.75-8.1, p value 0.001, area under ROC curve 0.9064). A mean APT cut point of 3.52 provides good specificity in differentiating low and high grade meningiomas (sensitivity 67%, specificity 94% and area under ROC curve 0.8021)
Conclusion: The APT-weighted image offers an additional technique in differentiating low and high grades meningioma, while there is no difference of ADC values among the meningioma grades.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Gelabert-González M, Serramito-García R. [Intracranial meningiomas: I. Epidemiology, aetiology, pathogenesis and prognostic factors]. Rev Neurol. 2011;53(3): 165-172.
3. Rapalino O, Smirniotopoulos JG. Extra-axial brain tumors. Handb Clin Neurol. 2016;135:275-291. doi:10.1016/B978-0-444-53485-9.00015-5
4. Veerasarn K, Yuthagovit S, Chailorrat A. Prevalence of Brain Tumor in Thailand from 2005 to 2014: Data from the National Health Security Office. J Med Assoc Thail Chotmaihet Thangphaet. 2016;99 Suppl 3:S62-73.
5. Louis DN, Perry A, Wesseling P, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. Neuro-Oncol. 2021; 23(8):1231-1251. doi:10.1093/neuonc/noab106
6. Nabors LB, Portnow J, Ahluwalia M, et al. Central Nervous System Cancers, Version 3.2020, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Cancer Netw JNCCN. 2020;18(11):1537-1570. doi:10.6004/jnccn.2020.0052
7. Dar M. Differentiation of Typical and Atypical Meningiomas Using Magnetic Resonance Imaging. Mustansiriya Med J. 2021;20:17-20. doi:10.4103/ MJ.MJ_36_20
8. Jones KM, Pollard AC, Pagel MD. Clinical applications of chemical exchange saturation transfer (CEST) MRI. J Magn Reson Imaging. 2018; 47(1):11-27. doi:10.1002/jmri.25838
9. Zhou J, Blakeley JO, Hua J, et al. Practical data acquisition method for human brain tumor amide proton transfer (APT) imaging. Magn Reson Med. 2008;60(4):842-849. doi:10.1002/mrm.21712
10. Bai Y, Lin Y, Zhang W, et al. Noninvasive amide proton transfer magnetic resonance imaging in evaluating the grading and cellularity of gliomas. Oncotarget. 2017;8(4):5834-5842. doi:10.18632/ oncotarget.13970
11. Durmo F, Rydhög A, Testud F, et al. Assessment of Amide proton transfer weighted (APTw) MRI for pre-surgical prediction of final diagnosis in gliomas. PLOS ONE. 2020;15(12): e0244003. doi:10.1371/journal.pone.0244003
12. Joo B, Han K, Choi YS, et al. Amide proton transfer imaging for differentiation of benign and atypical meningiomas. Eur Radiol. 2018;28(1):331-339. doi:10.1007/s00330-017-4962-1
13. Yu H, Wen X, Wu P, et al. Can amide proton transfer–weighted imaging differentiate tumor grade and predict Ki-67 proliferation status of meningioma? Eur Radiol. 2019;29(10):5298-5306. doi:10.1007/s00330-019-06115-w
14. Filippi CG, Edgar MA, Uluǧ AM, Prowda JC, Heier LA, Zimmerman RD. Appearance of Meningiomas on Diffusion-weighted Images: Correlating Diffusion Constants with Histopathologic Findings. AJNR Am J Neuroradiol. 2001;22(1):65-72. Accessed November 23, 2022. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7975551/
15. Hakyemez B, Yildirim N, Gokalp G, Erdogan C, Parlak M. The contribution of diffusion-weighted MR imaging to distinguishing typical from atypical meningiomas. Neuroradiology. 2006;48(8):513-520. doi:10.1007/s00234-006-0094-z
16. Nagar VA, Ye JR, Ng WH, et al. Diffusion-weighted MR imaging: diagnosing atypical or malignant meningiomas and detecting tumor dedifferentiation. AJNR Am J Neuroradiol. 2008;29(6):1147-1152. doi:10.3174/ajnr.A0996
17. Surov A, Gottschling S, Mawrin C, et al. Diffusion-Weighted Imaging in Meningioma: Prediction of Tumor Grade and Association with Histopathological Parameters. Transl Oncol. 2015; 8(6):517-523. doi:10.1016/j.tranon.2015.11.012
18. Pavlisa G, Rados M, Pazanin L, Padovan RS, Ozretic D, Pavlisa G. Characteristics of typical and atypical meningiomas on ADC maps with respect to schwannomas. Clin Imaging. 2008;32(1):22-27. doi:10.1016/j.clinimag.2007.07.007
19. Santelli L, Ramondo G, Della Puppa A, et al. Diffusion-weighted imaging does not predict histological grading in meningiomas. Acta Neurochir (Wien). 2010;152(8):1315-1319. doi:10.1 007/s00701-010-0657-y
20. Sanverdi SE, Ozgen B, Oguz KK, et al. Is diffusion-weighted imaging useful in grading and differentiating histopathological subtypes of meningiomas? Eur J Radiol. 2012;81(9):2389-2395. doi:10.1016/j.ejrad.2011.06.031
21. Cristancho-Rojas CN, Casares-Cruz K, Reina-Moreno D, Rembao-Bojórquez D. Apparent diffusion coefficient in magnetic resonance of atypical and malignant meningiomas. InAnales Radiol México. 2016;15(3):194-204.
22. Ying Y, Yahya N, Manan HA. Amide proton transfer MR imaging in the characterization of brain tumors: A review paper. J Radiat Res Appl Sci. 202 4;17(3):101043. doi:10.1016/j.jrras.2024.101043
23. Thammaroj J, Wongwichit N, Boonrod A. Evaluation of Perienhancing Area in Differentiation between Glioblastoma and Solitary Brain Metastasis. Asian Pac J Cancer Prev APJCP. 2020;21(9):2525-2530. doi:10.31557/APJCP.2020.21.9.2525
24. Phuttharak W, Boonrod A, Thammaroj J, Kitkhuandee A, Waraasawapati S. Preoperative MRI evaluation of meningioma consistency: A focus on detailed architectures. Clin Neurol Neurosurg. 2018;169:178-184. doi:10.1016/j.clineuro.2018.04.025