How Education Shapes Autoimmune Disease Risk: Evidence from Mendelian Randomization and Epidemiology

Main Article Content

Jozélio Freire de Carvalho

Abstract

Autoimmune diseases represent a major cause of chronic disability worldwide and arise from complex interactions between genetic, environmental, and social determinants. Among these factors, educational attainment has emerged as an important predictor of immune-mediated disease risk. This review synthesizes current evidence on the relationship between education and autoimmune diseases, with specific emphasis on Mendelian randomization studies, which use genetic variants as instruments to strengthen causal inference. A structured literature search identified genetic instrumental-variable analyses and observational studies evaluating education and autoimmune disease susceptibility. Consistent Mendelian randomization findings demonstrate that higher educational attainment reduces the risk of rheumatoid arthritis by approximately 50–60 percent, with nearly half of this protective effect mediated by modifiable factors such as smoking and body mass index. Emerging evidence for systemic lupus erythematosus, autoimmune thyroid disease, and psoriasis suggests similar protective trends, while associations with type 1 diabetes and latent autoimmune diabetes in adults appear heterogeneous. Educational attainment also influences autoimmune disease risk indirectly through occupational exposures, health behaviors, and systemic inflammation. Understanding these pathways highlights opportunities for prevention through behavioral, environmental, and policy-level interventions aimed at reducing disparities in autoimmune disease.

Keywords: rheumatoid arthritis, systemic lupus erythematosus, education, Mendelian randomization, social determinants of health, autoimmune disease.

Article Details

How to Cite
CARVALHO, Jozélio Freire de. How Education Shapes Autoimmune Disease Risk: Evidence from Mendelian Randomization and Epidemiology. Medical Research Archives, [S.l.], v. 13, n. 11, nov. 2025. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/7077>. Date accessed: 26 dec. 2025. doi: https://doi.org/10.18103/mra.v13i11.7077.
Section
Research Articles

References

1. Smolen JS, Aletaha D, McInnes IB. Rheumatoid arthritis. Lancet. 2016;388(10055):2023-2038. doi:10.1016/S0140-6736(16)30173-8

2. Tsokos GC. Systemic lupus erythematosus. N Engl J Med. 2011;365(22):2110-2121. doi:10.105 6/NEJMra1100359

3. Cross M, Smith E, Hoy D, et al. The global burden of rheumatoid arthritis: estimates from the global burden of disease 2010 study. Ann Rheum Dis. 2014;73(7):1316-1322. doi:10.1136/annrheumdis-2013-204627

4. Marmot M. Social determinants of health inequalities. Lancet. 2005;365(9464):1099-1104. doi:10.1016/S0140-6736(05)71146-6

5. Putrik P, Ramiro S, Kvien TK, et al. Inequities in access to biologic and synthetic DMARDs across 46 European countries. Ann Rheum Dis. 2014;73 (1):198-206. doi:10.1136/annrheumdis-2012-202603

6. Stolt P, Yahya A, Bengtsson C, et al. Silica exposure among male current smokers is associated with a high risk of developing ACPA-positive rheumatoid arthritis. Ann Rheum Dis. 2010;69(6):1072-1076. doi:10.1136/ard.2009.114694

7. Calixto OJ, Anaya JM. Socioeconomic status: the relationship with health and autoimmune diseases. Autoimmun Rev. 2014;13(6):641-654. doi:10.101 6/j.autrev.2013.12.002

8. Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet. 2014; 23(R1):R89-R98. doi:10.1093/hmg/ddu328

9. Burgess S, Thompson SG; CRP CHD Genetics Collaboration. Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol. 2011;40(3):755-764. doi:10.1093/ije/dyr036

10. Huang G, Cai J, Li W, et al. Causal relationship between educational attainment and the risk of rheumatoid arthritis: a Mendelian randomization study. BMC Rheumatol. 2021;5(1):47. doi:10.1186/s41927-021-00216-0

11. Zhao SS, Holmes MV, Zheng J, Sanderson E, Carter AR. The impact of education inequality on rheumatoid arthritis risk is mediated by smoking and body mass index: Mendelian randomization study. Rheumatology (Oxford). 2022;61(5):2167-2175. doi:10.1093/rheumatology/keab654

12. Zeng Y, Yang X, Tao S, Lei L. Association of education attainment and risk of connective tissue diseases. Int J Rheum Dis. 2024;27(7):e15264. doi:10.1111/1756-185X.15264

13. Li Y, Zhang J, Wen J, et al. Large-scale genome-wide association study to identify causal relationships and potential mediators between education and autoimmune diseases. Front Immunol. 2023;14: 1249017. doi:10.3389/fimmu.2023.1249017

14. White PA, Faresjö T, Jones MP, Ludvigsson J. Low maternal education increases the risk of type 1 diabetes: a mediating role of childhood BMI and exposure to serious life events. Sci Rep. 2023;13 (1):6166. doi:10.1038/s41598-023-32869-x

15. Lee JJ, Wedow R, Okbay A, et al. Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nat Genet. 2018;50(8):1112-1121. doi:10.1038/s41588-018-0147-3

16. Olsson L, Ahlbom A, Grill V, Midthjell K, Carlsson S. High levels of education and risk of latent autoimmune diabetes in adults. Diabetes Care. 2011;34(1):102-107. doi:10.2337/dc10-1061

17. Maurel M, Castagné R, Berger E, et al. Patterning of educational attainment across inflammatory markers: a multi-cohort study. Brain Behav Immun. 2020;90:303-310. doi:10.1016/j.bbi.2020.09.002

18. Morotti A, Sollaku I, Franceschini F, et al. Occupational exposure to free crystalline silica and rheumatoid arthritis: systematic review and meta-analysis. Clin Rev Allergy Immunol. 2022;62(2):333-345. doi:10.1007/s12016-021-08846-5

19. Boudigaard SH, Schlünssen V, Vestergaard JM, et al. Occupational exposure to respirable crystalline silica and autoimmune rheumatic diseases. Int J Epidemiol. 2021;50(4):1213-1226. doi:10.1093/ij e/dyaa287.

20. Friedman EM, Karlamangla AS, Gruenewald TL, Koretz B, Seeman TE. Income, education, and inflammation: differential associations in a national sample (the MIDUS study). Brain Behav Immun. 2010; 24(7):1054-1060. doi:10.1016/j.bbi.2010.02.009

21. Aiello AE, Dowd JB, Vasunilashorn S, et al. Socioeconomic position and inflammatory and immune biomarkers of cardiovascular disease: applications to the panel study of income dynamics. Am J Public Health. 2009;99(Suppl 1):S96-S103. doi:10.2105/AJPH.2008.137891

22. Li Y, Zhang J, Wen J, et al. Large-scale genome-wide association study to identify causal relationships and potential mediators between education and autoimmune diseases. Front Immunol. 2023;14:12 49017. doi:10.3389/fimmu.2023.1249017

23. Ausserwinkler M, et al. Exploring the link between socioeconomic factors and rheumatoid arthritis prevalence and outcomes: a population-based study. Soc Sci Med. 2025; (in press). doi:10.1016/j.socscimed.2025.1759

24. Chen C, Li Y, et al. Global, regional and national disparities and temporal trends of autoimmune diseases in children and adolescents from 1990 to 2019: analysis of the Global Burden of Disease Study. BMJ Glob Health. 2025;10(4):e017187. doi:10.1136/bmjgh-2024-e017187