Compound Impacts of COVID-19 mRNA Vaccination and SARS-CoV-2 Infection: A Convergence of Diverse “Spikeopathies” and Other Hybrid Harms

Main Article Content

M. Nathaniel Mead, MSc, PhD http://orcid.org/0009-0003-3574-4675 Jessica Rose, MSc, PhD http://orcid.org/0000-0002-9091-4425 Stephanie Seneff, MS, PhD http://orcid.org/0000-0001-8191-1049 Claire Rogers, MSPAS, PA-C http://orcid.org/0000-0002-1056-637X Nicolas Hulscher, MPH http://orcid.org/0009-0008-0677-7386 Kirstin Cosgrove, BM, CCRA http://orcid.org/0009-0007-4964-6215 Breanne Craven, PA-C http://orcid.org/0009-0006-6955-6770 Paul Marik, MD http://orcid.org/0000-0001-5024-3949 Peter A. McCullough, MD, MPH http://orcid.org/0000-0002-0997-6355

Abstract

COVID-19 can have short- and long-term health consequences, including various cardiovascular, respiratory, hematologic, autoimmune, and neurological conditions. Although it is often claimed that COVID-19 mRNA vaccinations reduce COVID-19 severity and post-acute sequelae, these assertions are refuted by evidence of extensive mRNA immunization-related harms that appear to be amplified by SARS-CoV-2 infection, resulting in considerable overlap in reported adverse outcomes. Spike proteins from both sources persist in the human body over the long-term, leading to immune dysfunction, inflammation, autoimmunity, organ dysfunction, and overlapping toxicities. We hypothesize that the mRNA vaccinations create a persistent toxic milieu of spike protein, inflammatory lipid nanoparticles, and DNA impurities, amplifying morbidity and mortality risks commonly ascribed to SARS-CoV-2 infection. Many 2021-2024 morbidity/mortality events in highly vaccinated populations, though often attributed solely to COVID-19 illness (due to close temporal associations with laboratory-confirmed infection), were more likely to result from these interactions or “hybrid harms”. Evidence supporting our hypothesis includes studies of negative efficacy, overlapping pathologies (e.g., myocarditis and thrombosis), redundant mechanisms, and epidemiological surges in excess mortality during the Omicron era (since December 2021) in extensively vaccinated countries. Case report data indicate that spike protein production along with associated “spikeopathies” may persist for at least three years, during which a coronavirus infection could trigger a new disease syndrome that would logically be attributed to the infection based on the timing. In contrast there is a relatively mild course for Omicron infections in the unvaccinated.  Ongoing spike production from prior mRNA vaccinations is likely to predispose Omicron-infected individuals to cumulative adverse effects over time. The amplified toxicities and immunopathologic effects may help account for near-synchronous waves of COVID-19 and all-cause mortality in the Omicron era. This novel framework calls for re-examining the unique immunopathological consequences of SARS-CoV-2 breakthrough infection in COVID-19 mRNA-vaccinated individuals and consideration of the implications for future public health strategies.

Keywords: vaccines, vaccination, modified mRNA products, SARS-CoV-2 infections, post-COVID vaccination syndrome, adverse events, immune dysfunction

Article Details

How to Cite
MEAD, M. Nathaniel et al. Compound Impacts of COVID-19 mRNA Vaccination and SARS-CoV-2 Infection: A Convergence of Diverse “Spikeopathies” and Other Hybrid Harms. Medical Research Archives, [S.l.], v. 13, n. 11, nov. 2025. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/7087>. Date accessed: 13 dec. 2025. doi: https://doi.org/10.18103/mra.v13i11.7087.
Section
Review Articles

References

1. Hu B, Huang S, Yin L. The cytokine storm and COVID-19. J Med Virol. 2021;93(1):250-256. doi: 10.1002/jmv.26232

2. Ejaz H, Alsrhani A, Zafar A, Javed H, Junaid K, Abdalla AE, Abosalif KOA, et al. COVID-19 and comorbidities: Deleterious impact on infected patients. J Infect Public Health. 2020;13(12):1833-1839. doi: 10.1016/j.jiph.2020.07.014

3. Ge E, Li Y, Wu S, Candido E, Wei X. Association of pre-existing comorbidities with mortality and disease severity among 167,500 individuals with COVID-19 in Canada: A population-based cohort study. PLoS One. 2021;16(10):e0258154. doi: 10.1371/journal.pone.0258154

4. Zuin M, Rigatelli G, Zuliani G, Rigatelli A, Mazza A, Roncon L. Arterial hypertension and risk of death in patients with COVID-19 infection: Systematic review and meta-analysis. J Infect. 2020;81(1):e84-e86. doi: 10.1016/j.jinf.2020.03.059

5. Cariou B, Hadjadj S, Wargny M, Pichelin M, Al-Salameh A, Allix I, Amadou C, et al.; CORONADO investigators. Phenotypic characteristics and prognosis of inpatients with COVID-19 and diabetes: the CORONADO study. Diabetologia. 2020;63(8): 1500-1515. doi: 10.1007/s00125-020-05180-x

6. Lazcano U, Cuadrado-Godia E, Grau M, Subirana I, Martínez-Carbonell E, Boher-Massaguer M, Rodríguez-Campello A, et al. Increased COVID-19 Mortality in People With Previous Cerebrovascular Disease: A Population-Based Cohort Study. Stroke. 2022;53(4):1276-1284. doi: 10.1161/STROKEAHA. 121.036257

7. Phelps M, Christensen DM, Gerds T, Fosbøl E, Torp-Pedersen C, Schou M, Køber L, et al. Cardiovascular comorbidities as predictors for severe COVID-19 infection or death. Eur Heart J Qual Care Clin Outcomes. 2021;7(2):172-180. doi: 10.1093/ehjqcco/qcaa081

8. Suleyman G, Fadel RA, Malette KM, Hammond C, Abdulla H, Entz A, Demertzis Z, et al. Clinical Characteristics and Morbidity Associated With Coronavirus Disease 2019 in a Series of Patients in Metropolitan Detroit. JAMA Netw Open. 2020;3(6) :e2012270. doi: 10.1001/jamanetworkopen.2020.12270

9. Ioannou GN, Locke E, Green P, Berry K, O'Hare AM, Shah JA, Crothers K, et al. Risk Factors for Hospitalization, Mechanical Ventilation, or Death Among 10 131 US Veterans With SARS-CoV-2 Infection. JAMA Netw Open. 2020;3(9):e2022310. doi: 10.1001/jamanetworkopen.2020.22310

10. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, Perez JL , et al.; C4591001 Clinical Trial Group. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med. 2020;383(27):2603-2615. doi: 10.1056/NEJ Moa2034577

11. El Sahly HM, Baden LR, Essink B, Doblecki-Lewis S, Martin JM, Anderson EJ, Campbell TB, et al; COVE Study Group. Efficacy of the mRNA-1273 SARS-CoV-2 Vaccine at Completion of Blinded Phase. N Engl J Med. 2021;385(19):1774-1785. doi: 10.1056/NEJMoa2113017

12. Vaccine Research & Development. How can COVID-19 vaccine development be done quickly and safely? Retrieved on October 16, 2025, from https://coronavirus.jhu.edu/vaccines/timeline

13. New York State Department of Health. The science behind vaccine research and testing. Retrieved on October 16, 2025, from https://www.health.ny.gov/prevention/immunization/vaccine_safety/science.htm

14. Cosentino M, Marino F. Understanding the Pharmacology of COVID-19 mRNA Vaccines: Playing Dice with the Spike? Int J Mol Sci. 2022;23(18):10881. doi: 10.3390/ijms231810881

15. Chaudhary JK, Yadav R, Chaudhary PK, Maurya A, Kant N, Rugaie OA, Haokip HR, et al. Insights into COVID-19 Vaccine Development Based on Immunogenic Structural Proteins of SARS-CoV-2, Host Immune Responses, and Herd Immunity. Cells. 2021;10(11):2949. doi: 10.3390/ cells10112949

16. Painter MM, Mathew D, Goel RR, Apostolidis SA, Pattekar A, Kuthuru O, Baxter AE , et al. Rapid induction of antigen-specific CD4+ T cells is associated with coordinated humoral and cellular immunity to SARS-CoV-2 mRNA vaccination. Immunity. 2021;54(9):2133-2142.e3. doi: 10.1016/ j.immuni.2021.08.001

17. Oldfield PR, Gutschi M, McCullough PA, Speicher DJ. BioNTech’s COVID-19 modRNA Vaccines: Dangerous genetic mechanism of action released before sufficient preclinical testing. Journal of American Physicians and Surgeons. 2024;29(4):118-126

18. Elsayed BMS, Altarawneh L, Farooqui HH, Khan MN, Babu GR, Doi SAR, Chivese T. Association Between Pre-Existing Conditions and COVID-19 Hospitalization, Intensive Care Services, and Mortality: A Cross-Sectional Analysis of an International Global Health Data Repository. Pathogens. 2025 Sep 11;14(9):917. doi: 10.3390/ pathogens14090917

19. World Health Organization. WHO COVID-19 dashboard. COVID-19 cases, World. Accessed on 2 October 2025. https://data.who.int/dashboards/covid19/cases?n=o

20. Rustagi V, Gupta SRR, Talwar C, Singh A, Xiao ZZ, Jamwal R, Bala K, et al. SARS-CoV-2 pathophysiology and post-vaccination severity: a systematic review. Immunol Res. 2024;73(1):17. doi: 10.1007/s12026-024-09553-x

21. Swiss Re Group. Covid-19 may lead to longest period of peacetime excess mortality, says new Swiss Re report. Swiss Re Institute, Zurich. 16 Sep 2024. https://www.swissre.com/press-release/Covid-19-may-lead-to-longest-period-of-peacetime-excess-mortality-says-new-Swiss-Re-report/eadc133c-01bd-49e8-9f3a-a3025a3380e6

22. World Health Organization. WHO COVID-19 dashboard. COVID-19 deaths, World. Accessed on 2 October 2025. URL: https://data.who.int/dashboards/covid19/deaths?n=o

23. Binnicker MJ. Challenges and Controversies to Testing for COVID-19. J Clin Microbiol. 2020;58 (11):e01695-20. doi: 10.1128/JCM.01695-20.

24. Pujadas E, Chaudhry F, McBride R, Richter F, Zhao S, Wajnberg A, Nadkarni G, et al. SARS-CoV-2 viral load predicts COVID-19 mortality. Lancet Respir Med. 2020;8(9):e70. doi: 10.1016/S2213-2600(20)30354-4.

25. Mallett S, Allen AJ, Graziadio S, Taylor SA, Sakai NS, Green K, Suklan J, et al. At what times during infection is SARS-CoV-2 detectable and no longer detectable using RT-PCR-based tests? A systematic review of individual participant data. BMC Med. 2020;18(1):346. doi: 10.1186/s12916-020-01810-8

26. Jefferson T, Spencer EA, Brassey J, Heneghan C. Viral Cultures for Coronavirus Disease 2019 Infectivity Assessment: A Systematic Review. Clin Infect Dis. 2021;73(11):e3884-e3899. doi: 10.1093 /cid/ciaa1764.

27. Basoulis D, Logioti K, Papaodyssea I, Chatzopoulos M, Alexopoulou P, Mavroudis P, Rapti V, et al. Deaths "due to" COVID-19 and deaths "with" COVID-19 during the Omicron variant surge, among hospitalized patients in seven tertiary-care hospitals, Athens, Greece. Sci Rep. 20 25;15(1):13728. doi: 10.1038/s41598-025-98834-y

28. Ward T, Fyles M, Glaser A, Paton RS, Ferguson W, Overton CE. The real-time infection hospitalisation and fatality risk across the COVID-19 pandemic in England. Nat Commun. 2024; 15(1):4633. doi: 10.1038/s41467-024-47199-3.

29. Mohapatra RK, Sarangi AK, Kandi V, Azam M, Tiwari R, Dhama K. Omicron (B.1.1.529 variant of SARS-CoV-2); an emerging threat: Current global scenario. J Med Virol. 2022 May;94(5):1780-1783. doi: 10.1002/jmv.27561

30. Karyakarte RP, Das R, Dudhate S, Agarasen J, Pillai P, Chandankhede PM, Labhshetwar RS, et al. Clinical characteristics and outcomes of laboratory-confirmed SARS-CoV-2 cases infected with Omicron subvariants and the XBB recombinant variant. Cureus. 2023;15(2):e35261. doi: 10.7759/ cureus.35261

31. Meng B, Abdullahi A, Ferreira IATM, Goonawardane N, Saito A, Kimura I, Yamasoba D, et al. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature. 2022;603(7902 ):706-714. doi: 10.1038/s41586-022-04474-x.

32. Omicron Joung SY, Ebinger JE, Sun N, Liu Y, Wu M, Tang AB, Prostko JC, et al. Awareness of SARS-CoV-2 Omicron variant infection among adults with recent COVID-19 seropositivity. JAMA Netw Open. 2022;5(8):e2227241. doi: 10.1001/ jamanetworkopen.2022.27241

33. Christie B. COVID-19: Early studies give hope omicron is milder than other variants. BMJ 2021;375:n3144. PMID: 34949600

34. Zhao H, Lu L, Peng Z, Chen LL, Meng X, Zhang C, Ip JD, et al. SARS-CoV-2 Omicron variant shows less efficient replication and fusion activity when compared with Delta variant in TMPRSS2-expressed cells. Emerg Microbes Infect. 2022;11(1) :277-283. doi: 10.1080/22221751.2021.2023329.

35. Tureček P, Kleisner K. Symptomatic mimicry between SARS-CoV-2 and the common cold complex. Biosemiotics. 2022;15(1):61–6. https://doi.org/10.1007/s12304-021-09472-6

36. Lorenzo-Redondo R, Ozer EA, Hultquist JF. COVID-19: is omicron less lethal than delta? BMJ. 2022;378:o1806. PMID: 35918084.

37. Pather S, Madhi SA, Cowling BJ, Moss P, Kamil JP, Ciesek S, Muik A, Türeci Ö. SARS-CoV-2 Omicron variants: burden of disease, impact on vaccine effectiveness and need for variant-adapted vaccines. Front Immunol. 2023;14:1130539. doi: 10.3389/fimmu.2023.1130539

38. Excess Mortality Project. Excess mortality calculations for different countries. Phinance Technologies. Accessed 7/18/2025. URL: https://phinancetechnologies.com/HumanityProjects/Projects.htm

39. Kuhbandner C, Reitzner M. Estimation of Excess Mortality in Germany During 2020-2022. Cureus. 2023;15(5):e39371. doi: 10.7759/cureus.39371

40. Aarstad J, Kvitastein OA. Is there a link between the 2021 COVID-19 vaccination uptake in Europe and 2022 excess all-cause mortality? Asian Pac. J. Health Sci. 2023;10(1):25-31. https://www.apjhs.com/index.php/apjhs/article/view/3017/1610

41. Economidou EC, Soteriades ES. Excess mortality in Cyprus during the COVID-19 vaccination campaign. Vaccine. 2024;42(15):3375-3376. doi: 10.1016/j.vaccine.2023.11.028

42. Raknes G, Fagerås SJ, Sveen KA, Júlíusson PB, Strøm MS. Excess non-COVID-19 mortality in Norway 2020-2022. BMC Public Health. 2024;24(1) :244. doi: 10.1186/s12889-023-17515-5

43. Mostert S, Hoogland M, Huibers M, Kaspers G. Excess mortality across countries in the Western World since the COVID-19 pandemic: ‘Our World in Data’ estimates of January 2020 to December 2022. BMJ Public Health 2024;2:e000282. doi:10. 1136/bmjph-2023-000282. https://bmjpublichealth.bmj.com/content/2/1/e000282

44. Cao X, Li Y, Zi Y, Zhu Y. The shift of percent excess mortality from zero-COVID policy to living-with-COVID policy in Singapore, South Korea, Australia, New Zealand and Hong Kong SAR. Front Public Health. 2023;11:1085451. doi: 10.3389/fpu bh.2023.1085451

45. Scherb H. and K. Hayashi. Annual All-Cause Mortality Rate in Germany and Japan (2005 to 2022) With Focus on The COVID-19 Pandemic: Hypotheses And Trend Analyses. Med Clin Sci 5(2): 1-7. https://journals.sciencexcel.com/index.php/mcs/article/view/411/413

46. De Padua Durante AC, Lacaza R, Lapitan P, Kochhar N, Tan ES, Thomas M. Mixed effects modelling of excess mortality and COVID-19 lockdowns in Thailand. Sci Rep. 2024 Apr 8;14(1):8240. doi: 10.1038/s41598-024-58358-3.

47. Fenton NE, Neil M, McLachlan S. Paradoxes in the reporting of COVID19 vaccine effectiveness: Why current studies (for or against vaccination) cannot be trusted and what we can do about it. ResearchGate. 2021. https://doi.org/10.13140/RG.2.2.32655.30886

48. Lataster R. How the adverse effect counting window affected vaccine safety calculations in randomised trials of COVID-19 vaccines. J Eval Clin Pract. 2024 Apr;30(3):453-458. doi: 10.1111/jep.13962.

49. Grasselli G, Zanella A, Carlesso E, Florio G, Canakoglu A, Bellani G, Bottino N, et al. Association of COVID-19 Vaccinations With Intensive Care Unit Admissions and Outcome of Critically Ill Patients With COVID-19 Pneumonia in Lombardy, Italy. JAMA Netw Open. 2022 Oct 3;5(10):e2238871. doi: 10.1001/jamanetworkopen.2022.38871

50. Ophir Y, Shir-Raz Y, Zakov S, Lataster R, McCullough PA. A Step-by-Step Evaluation of the Claim That COVID-19 Vaccines Saved Millions of Lives. International Journal of Applied Biology and Pharmaceutical Technology. 2025; 16: 35-50. https://www.fortunejournals.com/articles/a-stepbystep-evaluation-of-the-claim-that-covid19-vaccines-saved-millions-of-lives.html

51. Ophir Y, Shira-Raz Y, Zakov S, McCullough PA. The efficacy of COVID-19 vaccine boosters against severe illness and deaths scientific fact or wishful myth? J Am Phys Surg. 2023; 28: 20-7. https://www.jpands.org/search-results.htm

52. Shrestha NK, Burke PC, Nowacki AS, Simon JF, Hagen A, Gordon SM. Effectiveness of the Coronavirus disease 2019 bivalent vaccine. Open Forum Infect Dis. 2023;10(6):ofad209. doi: 10.1093 /ofid/ofad209.

53. Nakatani E, Morioka H, Kikuchi T, Fukushima M. Behavioral and Health Outcomes of mRNA COVID-19 Vaccination: A Case-Control Study in Japanese Small and Medium-Sized Enterprises. Cureus. 2024;16(12):e75652. doi: 10.7759/cureus.75652

54. Chemaitelly H, Ayoub HH, AlMukdad S, Coyle P, Tang P, Yassine HM, Al-Khatib HA, et al. Duration of mRNA vaccine protection against SARS-CoV-2 Omicron BA.1 and BA.2 subvariants in Qatar. Nat Commun. 2022;13(1):3082. doi: 10.103 8/s41467-022-30895-3

55. UK Health Security Agency. COVID-19 vaccine surveillance report, Week 8 Feb. 24, 2022. https://assets.publishing.service.gov.uk/media/621c91c0d3bf7f4f04b2b648/Vaccine_surveillance_report_-_week-8.pdf

56. Eythorsson E, Runolfsdottir HL, Ingvarsson RF, Sigurdsson MI, Palsson R. Rate of SARS-CoV-2 Reinfection During an Omicron Wave in Iceland. JAMA Netw Open. 2022;5(8):e2225320. doi: 10.10 01/jamanetworkopen.2022.25320

57. Feldstein LR, Ruffin J, Wiegand R, Grant L, Babu TM, Briggs-Hagen M, Burgess JL, et al. Protection from COVID-19 vaccination and prior SARS-CoV-2 infection among children aged 6 months - 4 years, United States, September 2022-April 2023. J Pediatric Infect Dis Soc. 2024:piae121 . doi: 10.1093/jpids/piae121

58. Ioannou GN, Berry K, Rajeevan N, Li Y, Yan L, Huang Y, Lin HM, et al. Effectiveness of the 2023-to-2024 XBB.1.5 COVID-19 Vaccines Over Long-Term Follow-up: A Target Trial Emulation. Ann Intern Med. 2025;178(3):348-359. doi: 10.7326/ ANNALS-24-01015

59. Shrestha NK, Burke PC, Nowacki AS, Gordon SM. Risk of Coronavirus Disease 2019 (COVID-19) among those up-to-date and not up-to-date on COVID-19 vaccination by US CDC criteria. PLoS One. 2023;18(11):e0293449. doi: 10.1371/journal. pone.0293449

60. Gazit S, Shlezinger R, Perez G, Lotan R, Peretz A, Ben-Tov A, Herzel E, et al. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Naturally Acquired Immunity versus Vaccine-induced Immunity, Reinfections versus Breakthrough Infections: A Retrospective Cohort Study. Clin Infect Dis. 2022;75(1):e545-e551. doi: 10.1093/cid/ciac262

61. Rose J. Breakthrough Infection Signal in VAERS Corroborates IgG4-Mediated Increased Susceptibility to SARS-CoV-2. Sci Public Health Policy Law. 2025;6:2019-2025. Available from: https://publichealthpolicyjournal.com

62. Levin EG, Lustig Y, Cohen C, Fluss R, Indenbaum V, Amit S, Doolman R, Asraf K, Mendelson E, Ziv A, Rubin C, Freedman L, Kreiss Y, Regev-Yochay G. Waning Immune Humoral Response to BNT162b2 Covid-19 Vaccine over 6 Months. N Engl J Med. 2021;385(24):e84. doi: 10.1056/NEJMoa2114583

63. Haq MA, Roy AK, Ahmed R, Kuddusi RU, Sinha M, Hossain MS, Vandenent M, et al. Antibody longevity and waning following COVID-19 vaccination in a 1-year longitudinal cohort in Bangladesh. Sci Rep. 2024;14(1):11467. doi: 10.1038/s41598-024-61922-6

64. Jamous YF, Sheik Uduman MST, Alnakhli M, Alshaibi A, Alhawsawi M, Binsalman A. The Incidence and Severity of COVID-19 Infection Post Vaccination in Saudi Arabia. Cureus. 2023;15(5):e39766. doi: 10.7759/cureus.39766

65. Ben Fredj S, Ghammem R, Zammit N, Maatouk A, Haddad N, Haddad N, Kachroudi M, et al. Risk factors for severe Covid-19 breakthrough infections: an observational longitudinal study. BMC Infect Dis. 2022;22(1):894. doi: 10.1186/s12879-022-07859-5

66. Ioannidis JPA. Infection fatality rate of COVID-19 inferred from seroprevalence data. Bull World Health Organ. 2021;99(1):19-33F. doi: 10.2471/ BLT.20.265892.

67. Pezzullo AM, Axfors C, Contopoulos-Ioannidis DG, Apostolatos A, Ioannidis JPA. Age-stratified infection fatality rate of COVID-19 in the non-elderly population. Environ Res. 2023;216(Pt 3):114 655. doi: 10.1016/j.envres.2022.114655

68. Robinson, J. Are these the numbers scaring Boris? Study shows 29% of the 42 people who have died after catching the new strain had BOTH vaccinations as cases soar another 40%. Daily Mail News. Published June 13, 2021. Accessed June 20, 2025. https://www.dailymail.co.uk/news/article-9681613/Study-shows-29-people-died-catching-new-strain-vaccinations.html

69. UK Government. Public Health England. Research and analysis. Investigation of SARS-CoV-2 variants of concern: technical briefings. Published 21 December 2020. Last updated 17 September 2021. URL: https://www.gov.uk/government/publications/investigation-of-novel-sars-cov-2-variant-variant-of-concern-20201201

70. Attwell K, Hannah A. Convergence on Coercion: Functional and Political Pressures as Drivers of Global Childhood Vaccine Mandates. Int J Health Policy Manag. 2022 Dec 6;11(11):2660-2671. doi: 10.34172/ijhpm.2022.6518

71. Fenton N, Neil M. The Very Best Cheap Trick. In: Fighting Goliath: Exposing the flawed science and statistics behind the COVID-19 event. Sovereign Rights Publishing, United Kingdom. 2024. pp. 202-212

72. HHJ News, Obituaries: Shawn Thomas Kuhn. Houston Home Journal. 10-16-2021. https://hhjonline.com/shawn-thomas-kuhn/

73. Gilbertson D. 'I'm going to miss my friend': Southwest Airlines flight attendant, 36, dies from COVID-19. USA Today. Airline News. 8-12-2021. https://www.usatoday.com/story/travel/airline-news/2021/08/11/southwest-airlines-flight-attendant-covid-maurice-reggie-shepperson/8100532002/

74. Suleyman A. Fully Vaccinated New Orleans Woman Dies of COVID Aged 33 in Rare Breakthrough Case. Newsweek. 7-27-2021. https://www.newsweek.com/fully-vaccinated-new-orleans-woman-dies-covid-aged-33-rare-breakthrough-case-1613379

75. Parry PI, Lefringhausen A, Turni C, Neil CJ, Cosford R, Hudson NJ, Gillespie J. 'Spikeopathy': COVID-19 Spike Protein Is Pathogenic, from Both Virus and Vaccine mRNA. Biomedicines. 2023;11 (8):2287. doi: 10.3390/biomedicines11082287

76. Schwartz L, Aparicio-Alonso M, Henry M, Radman M, Attal R, Bakkar A. Toxicity of the spike protein of COVID-19 is a redox shift phenomenon: A novel therapeutic approach. Free Radic Biol Med. 2023;206:106-110. doi: 10.1016/j.freeradbio med.2023.05.034

77. Theoharides TC, Conti P. Be aware of SARS-CoV-2 spike protein: There is more than meets the eye. J Biol Regul Homeost Agents. 2021;35(3):833-838. doi: 10.23812/THEO_EDIT_3_21

78. Lei Y, Zhang J, Schiavon CR, He M, Chen L, Shen H, Zhang Y, et al. SARS-CoV-2 Spike Protein Impairs Endothelial Function via Downregulation of ACE 2. Circ Res. 2021;128(9):1323-1326. doi: 10.1161/CIRCRESAHA.121.318902

79. Ittiwut C, Mahasirimongkol S, Srisont S, Ittiwut R, Chockjamsai M, Durongkadech P, Sawaengdee W, et al. Genetic basis of sudden death after COVID-19 vaccination in Thailand. Heart Rhythm. 2022;19(11):1874-1879. doi: 10.1016/j.hrthm.2022 .07.019.

80. Chen DP, Wen YH, Lin WT, Hsu FP. Association between the side effect induced by COVID-19 vaccines and the immune regulatory gene polymorphism. Front Immunol. 2022;13:941 497. doi: 10.3389/fimmu.2022.941497

81. Ndeupen S, Qin Z, Jacobsen S, Bouteau A, Estanbouli H, Igyártó BZ. The mRNA-LNP platform's lipid nanoparticle component used in preclinical vaccine studies is highly inflammatory. iScience. 2021;24(12):103479. doi: 10.1016/j.isci. 2021.103479

82. Di Gioacchino M, Petrarca C, Lazzarin F, Di Giampaolo L, Sabbioni E, Boscolo P, Mariani-Costantini R, et al. Immunotoxicity of nanoparticles. Int J Immunopathol Pharmacol. 2011;24(1 Suppl): 65S-71S

83. Lonez C, Bessodes M, Scherman D, Vandenbranden M, Escriou V, Ruysschaert JM. Cationic lipid nanocarriers activate Toll-like receptor 2 and NLRP3 inflammasome pathways. Nanomedicine. 2014;10(4):775-82. doi: 10.1016/j.nano.2013.12.003

84. Kedmi R, Ben-Arie N, Peer D. The systemic toxicity of positively charged lipid nanoparticles and the role of Toll-like receptor 4 in immune activation. Biomaterials. 2010;31(26):6867-75. doi: 10.1016/j.biomaterials.2010.05.027

85. Cui S, Wang Y, Gong Y, Lin X, Zhao Y, Zhi D, Zhou Q, et al. Correlation of the cytotoxic effects of cationic lipids with their headgroups. Toxicol Res (Camb). 2018;7(3):473-479. doi: 10.1039/c8tx00005k

86. Parhiz H, Brenner JS, Patel PN, Papp TE, Shahnawaz H, Li Q, Shi R, et al. Added to pre-existing inflammation, mRNA-lipid nanoparticles induce inflammation exacerbation (IE). J Control Release. 2022;344:50-61. doi: 10.1016/j.jconrel. 2021.12.027

87. Soegiarto G, Purnomosari D. Challenges in the Vaccination of the Elderly and Strategies for Improvement. Pathophysiology. 2023 Apr 22;30(2): 155-173. doi: 10.3390/pathophysiology30020014

88. McKernan K, Helbert Y, Kane LT, McLaughlin S. Sequencing of bivalent Moderna and Pfizer mRNA vaccines reveals nanogram to microgram quantities of expression vector dsDNA per dose. OSF Prepr. 2023 doi: 10.31219/osf.io/b9t7m

89. Speicher DJ, Rose J, Gutschi LM, McKernan K. DNA Fragments detected in monovalent and bivalent Pfizer/BioNTech and Moderna modRNA COVID-19 vaccines from Ontario, Canada: Exploratory dose response relationship with SERIOUS adverse events. OSF Preprints. Oct 19, 2023. [(accessed on 26 February 2024)]. Available online: https://osf.io/preprints/osf/mjc97

90. König B, Kirchner JO. Methodological Considerations Regarding the Quantification of DNA Impurities in the COVID-19 mRNA Vaccine Comirnaty®. Methods Protoc. 2024;7(3):41. doi: 10.3390/mps7030041

91. Aldén M., Olofsson Falla F., Yang D., Barghouth M., Luan C., Rasmussen M., De Marinis Y. Intracellular reverse transcription of Pfizer BioNTech COVID-19 mRNA vaccine BNT162b2 in vitro in human liver cell line. Current Issues in Molecular Biology. 2022; 44(3): 1115–1126. https://doi.org/10.3390/cimb44030073

92. Caforio AL, Tona F, Bottaro S, Vinci A, Dequal G, Daliento L, Thiene G, et al. Clinical implications of anti-heart autoantibodies in myocarditis and dilated cardiomyopathy. Autoimmunity. 2008 Feb; 41(1):35-45. doi: 10.1080/08916930701619235

93. Levi R, Mansuri F, Jordan MM, Ladapo JA. Twelve-Month All-Cause Mortality after Initial COVID-19 Vaccination with Pfizer-BioNTech or mRNA-1273 among Adults Living in Florida. medRxiv [preprint]. Posted 29 April 2025. doi: https://doi.org/10.1101/2025.04.25.25326460

94. Siebner AS, Griesbaum J, Huus KE, Flügge J, Hopfensperger K, Michel T, Schneiderhan-Marra N, et al. Class switch toward IgG2 and IgG4 is more pronounced in BNT162b2 compared to mRNA-1273 COVID-19 vaccinees. Int J Infect Dis. 2025; 159:107990. doi: 10.1016/j.ijid.2025.107990.

95. Sass E. COVID-19 mRNA "vaccine" harms research collection. In Toxic Shot: Facing the Dangers of the COVID "Vaccines". Zenodo. 2 July 2025. https://doi.org/10.5281/zenodo.15787612

96. Japanese Pharmaceuticals and Medical Devices Agency (PMDA) SARS-CoV-2 mRNA Vaccine (BNT162, PF-07302048) 2021. [(accessed on 7 April 2023)]. Available online: https://www.pmda.go.jp/drugs/2021/P20210212001/672212000_30300AMX00231_I100_1.pdf

97. Di J., Du Z., Wu K., Jin S., Wang X., Li T., Xu Y. Biodistribution and Non-linear Gene Expression of mRNA LNPs Affected by Delivery Route and Particle Size. Pharm. Res. 2022;39:105–114. doi: 10.1007/s11095-022-03166-5

98. Judicial Watch Pfizer/BioNTech Study Found Lipid Nanoparticles Materials Outside Injection Site in Test Animals. judicialwatch.org. 2022. [(accessed on 12 July 2023)]. Available online: https://www.judicialwatch.org/nanoparticles-materials-outside-injection-site/

99. Trougakos IP, Terpos E, Alexopoulos H, Politou M, Paraskevis D, Scorilas A, Kastritis E, et al. Adverse effects of COVID-19 mRNA vaccines: the spike hypothesis. Trends Mol Med. 2022;28 (7):542-554. doi: 10.1016/j.molmed.2022.04.007

100. Baumeier C, Aleshcheva G, Harms D, Gross U, Hamm C, Assmus B, Westenfeld R, et al. Intramyocardial Inflammation after COVID-19 Vaccination: An Endomyocardial Biopsy-Proven Case Series. Int J Mol Sci. 2022 Jun 22;23(13):6940. doi: 10.3390/ijms23136940

101. Sriwastava S, Sharma K, Khalid SH, Bhansali S, Shrestha AK, Elkhooly M, Srivastava S, et al. COVID-19 Vaccination and Neurological Manifestations: A Review of Case Reports and Case Series. Brain Sci. 2022;12(3):407. doi: 10.3390/ brainsci12030407

102. Vogrig A, Tartaglia S, Dentoni M, Fabris M, Bax F, Belluzzo M, Verriello L, et al. Central nervous system immune-related disorders after SARS-CoV-2 vaccination: a multicenter study. Front Immunol. 2024;15:1344184. doi: 10.3389/fimmu.2024.1344184

103. Schinas G, Polyzou E, Dimakopoulou V, Tsoupra S, Gogos C, Akinosoglou K. Immune-mediated liver injury following COVID-19 vaccination. World J Virol. 2023;12(2):100-108. doi: 10.5501/wjv.v12.i2.100

104. Posa A. Spike protein-related proteinopathies: A focus on the neurological side of spikeopathies. Ann Anat. 2025;260:152662. doi: 10.1016/j.aanat. 2025.152662

105. Mulroney TE, Pöyry T, Yam-Puc JC, Rust M, Harvey RF, Kalmar L, Horner E, Booth L, et al. N1-methylpseudouridylation of mRNA causes +1 ribosomal frameshifting. Nature. 2024 Jan;625(79 93):189-194. doi: 10.1038/s41586-023-06800-3

106. Seneff S, Kyriakopoulos AM, Nigh G, McCullough PA. A Potential Role of the Spike Protein in Neurodegenerative Diseases: A Narrative Review. Cureus. 2023;15(2):e34872. doi: 10.7759/cureus.34872

107. Perez JC, Moret-Chalmin C, Montagnier L. Emergence of a New Creutzfeldt-Jakob Disease: 26 Cases of the Human Version of Mad-Cow Disease, Days After a COVID-19 Injection. International Journal of Vaccine Theory, Practice, and Research 2023; 3(1): 727-770. https://doi.org/10.56098/ijvtpr.v3i1.66

108. Morais P., Adachi H., Yu Y.T. The Critical Contribution of Pseudouridine to mRNA COVID-19 Vaccines. Front. Cell. Dev. Biol. 2021;9:789427. doi: 10.3389/fcell.2021.789427

109. Nance KD, Meier JL. Modifications in an Emergency: The Role of N1-Methylpseudouridine in COVID-19 Vaccines. ACS Cent Sci. 2021;7(5): 748-756. doi: 10.1021/acscentsci.1c00197

110. Suzuki YJ, Gychka SG. SARS-CoV-2 Spike Protein Elicits Cell Signaling in Human Host Cells: Implications for Possible Consequences of COVID-19 Vaccines. Vaccines (Basel). 2021;9(1):36. doi: 10.3390/vaccines9010036

111. Krauson AJ, Casimero FVC, Siddiquee Z, Stone JR. Duration of SARS-CoV-2 mRNA vaccine persistence and factors associated with cardiac involvement in recently vaccinated patients. NPJ Vaccines. 2023 Sep 27;8(1):141. doi: 10.1038/s41 541-023-00742-7

112. Ogata AF, Cheng CA, Desjardins M, Senussi Y, Sherman AC, Powell M, Novack L, Von S, Li X, Baden LR, Walt DR. Circulating Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Vaccine Antigen Detected in the Plasma of mRNA-1273 Vaccine Recipients. Clin Infect Dis. 2022 Mar 1;74(4):715-718. doi: 10.1093/cid/ciab465

113. Boros LG, Kyriakopoulos AM, Brogna C, Piscopo M, McCullough PA, Seneff S. Long-lasting, biochemically modified mRNA, and its frameshifted recombinant spike proteins in human tissues and circulation after COVID-19 vaccination. Pharmacol Res Perspect. 2024;12(3):e1218. doi: 10.1002/prp2.1218

114. Brogna C, Cristoni S, Marino G, Montano L, Viduto V, Fabrowski M, Lettieri G, et al. Detection of recombinant Spike protein in the blood of individuals vaccinated against SARS-CoV-2: Possible molecular mechanisms. Proteomics Clin Appl. 202 3;17(6):e2300048. doi: 10.1002/prca.202300048

115. Patterson BK, Yogendra R, Francisco EB, Guevara-Coto J, Long E, Pise A, Osgood E, et al. Detection of S1 spike protein in CD16+ monocytes up to 245 days in SARS-CoV-2-negative post-COVID-19 vaccine syndrome (PCVS) individuals. Hum Vaccin Immunother. 2025;21(1):2494934. doi: 10.1080/21645515.2025.2494934

116. Ota N, Itani M, Aoki T, Sakurai A, Fujisawa T, Okada Y, Noda K, et al. Expression of SARS-CoV-2 spike protein in cerebral Arteries: Implications for hemorrhagic stroke Post-mRNA vaccination. J Clin Neurosci. 2025;136:111223. doi: 10.1016/j.jocn. 2025.111223

117. Bhattacharjee B, Lu P, Monteiro VS, Tabachnikova A, Wang K, Hooper WB, Bastos V, et al. Immunological and Antigenic Signatures Associated with Chronic Illnesses after COVID-19 Vaccination. medRxiv preprint 2025. doi: https://doi.org/10.1101/2025.02.18.25322379

118. McCullough PA, Hulscher N. McCullough Foundation research. Article in press. 30 August 2025

119. Seneff S, Nigh G, Kyriakopoulos AM, McCullough PA. Innate immune suppression by SARS-CoV-2 mRNA vaccinations: The role of G-quadruplexes, exosomes, and MicroRNAs. Food Chem Toxicol. 2022;164:113008. doi: 10.1016/j.fct .2022.113008

120. Klingel H, Krüttgen A, Imöhl M, Kleines M. Humoral immune response to SARS-CoV-2 mRNA vaccines is associated with choice of vaccine and systemic adverse reactions. Clin Exp Vaccine Res. 2023;12(1):60-69. doi: 10.7774/cevr.2023.12.1.60

121. Kim KQ, Burgute BD, Tzeng SC, Jing C, Jungers C, Zhang J, Yan LL, et al. N1-methylpseudouridine found within COVID-19 mRNA vaccines produces faithful protein products. Cell Rep. 2022;40(9):111 300. doi: 10.1016/j.celrep.2022.111300

122. Uversky VN, Redwan EM, Makis W, Rubio-Casillas A. IgG4 Antibodies Induced by Repeated Vaccination May Generate Immune Tolerance to the SARS-CoV-2 Spike Protein. Vaccines (Basel). 2023;11(5):991. doi: 10.3390/vaccines11050991

123. Irrgang P, Gerling J, Kocher K, Lapuente D, Steininger P, Habenicht K, Wytopil M, et al. Class switch toward noninflammatory, spike-specific IgG4 antibodies after repeated SARS-CoV-2 mRNA vaccination. Sci Immunol. 2023 Jan 27;8(79):eade 2798. doi: 10.1126/sciimmunol.ade2798

124. Garg RK, Paliwal VK. Spectrum of neurological complications following COVID-19 vaccination. Neurol Sci. 2022;43(1):3-40. doi: 10.1007/s10072-021-05662-9

125. Kobayashi M, Kobayashi S, Hayashi T, Tachibana M, Saito T, Ogura K, Miyakoshi S. Immune thrombocytopenic purpura in an elderly patient with cerebral hemorrhage after the fourth mRNA-1273 COVID-19 vaccination. Geriatr Gerontol Int. 2023;23(12):969-970. doi: 10.1111/ggi.14737

126. Lee EJ, Beltrami-Moreira M, Al-Samkari H, Cuker A, DiRaimo J, Gernsheimer T, Kruse A, et al. SARS-CoV-2 vaccination and ITP in patients with de novo or preexisting ITP. Blood. 2022;139(10):1564-1574. doi: 10.1182/blood.2021013411

127. Liu J, Wang J, Xu J, Xia H, Wang Y, Zhang C, Chen W, et al. Comprehensive investigations revealed consistent pathophysiological alterations after vaccination with COVID-19 vaccines. Cell Discov. 2021 Oct 26;7(1):99. doi: 10.1038/s41421-021-00329-3

128. Espino AM, Armina-Rodriguez A, Alvarez L, Ocasio-Malavé C, Ramos-Nieves R, Rodriguez Martinó EI, López-Marte P, et al. The Anti-SARS-CoV-2 IgG1 and IgG3 Antibody Isotypes with Limited Neutralizing Capacity against Omicron Elicited in a Latin Population a Switch toward IgG4 after Multiple Doses with the mRNA Pfizer-BioNTech Vaccine. Viruses. 2024;16(2):187. doi: 10.3390/v16020187

129. Motta RV, Culver EL. IgG4 autoantibodies and autoantigens in the context of IgG4-autoimmune disease and IgG4-related disease. Front Immunol. 2024 Feb 16;15:1272084. doi: 10.3389/fimmu. 2024.1272084

130. Chevaisrakul P, Lumjiaktase P, Kietdumrongwong P, Chuatrisorn I, Chatsangjaroen P, Phanuphak N. Hybrid and herd immunity 6 months after SARS-CoV-2 exposure among individuals from a community treatment program. Sci Rep. 2023;13 (1):763. doi: 10.1038/s41598-023-28101-5

131. Martín Pérez C, Ruiz-Rius S, Ramírez-Morros A, Vidal M, Opi DH, Santamaria P, Blanco J, et al. Post-vaccination IgG4 and IgG2 class switch associates with increased risk of SARS-CoV-2 infections. J Infect. 2025;90(4):106473. doi: 10.101 6/j.jinf.2025.106473

132. Kiszel P, Sík P, Miklós J, Kajdácsi E, Sinkovits G, Cervenak L, Prohászka Z. Class switch towards spike protein-specific IgG4 antibodies after SARS-CoV-2 mRNA vaccination depends on prior infection history. Sci Rep. 2023;13(1):13166. doi: 10.1038/s41598-023-40103-x

133. Awaya T, Moroi M, Enomoto Y, Kunimasa T, Nakamura M. What Should We Do after the COVID-19 Vaccination? Vaccine-Associated Diseases and Precautionary Measures against Adverse Reactions. Vaccines (Basel). 2022;10(6):866. doi: 10.3390/vaccines10060866

134. Zagorec N, Horvatić I, Šenjug P, Horaček M, Galešić Ljubanović D, Galešić K. Immune-mediated diseases after coronavirus disease 2019 vaccination: rare but important complication. Croat Med J. 2022;63(4):389-393. doi: 10.3325/cmj.2022.63.389

135. Franchini M, Liumbruno GM, Pezzo M. COVID-19 vaccine-associated immune thrombosis and thrombocytopenia (VITT): Diagnostic and therapeutic recommendations for a new syndrome. Eur J Haematol. 2021;107(2):173-180. doi: 10.1111/ejh.13665

136. Leisman DE, Ronner L, Pinotti R, Taylor MD, Sinha P, Calfee CS, Hirayama AV, et al. Cytokine elevation in severe and critical COVID-19: a rapid systematic review, meta-analysis, and comparison with other inflammatory syndromes. Lancet Respir Med. 2020 Dec;8(12):1233-1244. doi: 10.1016/S22 13-2600(20)30404-5

137. Safary A, Esalatmanesh K, Eftekharsadat AT, Jafari Nakjavani MR, Khabbazi A. Autoimmune inflammatory rheumatic diseases post-COVID-19 vaccination. Int Immunopharmacol. 2022;110:1090 61. doi: 10.1016/j.intimp.2022.109061

138. Guo M, Liu X, Chen X, Li Q. Insights into new-onset autoimmune diseases after COVID-19 vaccination. Autoimmun Rev. 2023;22(7):103340. doi: 10.1016/j.autrev.2023.103340

139. Keijzer S, Oskam N, Ooijevaar-de Heer P, Steenhuis M, Keijser JBD, Wieske L, van Dam KPJ, et al. Longitudinal rheumatoid factor autoantibody responses after SARS-CoV-2 vaccination or infection. Front Immunol. 2024;15:1314507. doi: 10.3389/fimmu.2024.1314507

140. Hileman CO, Malakooti SK, Patil N, Singer NG, McComsey GA. New-onset autoimmune disease after COVID-19. Front Immunol. 2024;15:1337406. doi: 10.3389/fimmu.2024.1337406

141. Chen Y, Xu Z, Wang P, Li XM, Shuai ZW, Ye DQ, Pan HF. New-onset autoimmune phenomena post-COVID-19 vaccination. Immunology. 2022;16 5(4):386-401. doi: 10.1111/imm.13443

142. Liu J, Wu H, Xia SL. New-Onset Arthritis Following COVID-19 Vaccination: A Systematic Review of Case Reports. Vaccines (Basel). 2023;11 (3):665. doi: 10.3390/vaccines11030665

143. Sagy I, Zeller L, Raviv Y, Porges T, Bieber A, Abu-Shakra M. New-onset systemic lupus erythematosus following BNT162b2 mRNA COVID-19 vaccine: a case series and literature review. Rheumatol Int. 2022;42(12):2261-2266. doi: 10.1007/s00296-022-05203-3

144. Mehta P, Fajgenbaum DC. Is severe COVID-19 a cytokine storm syndrome: a hyperinflammatory debate. Curr Opin Rheumatol. 2021;33(5):419-430. doi: 10.1097/BOR.0000000000000822

145. Diao B, Wang C, Tan Y, Chen X, Liu Y, Ning L, Chen L, et al. Reduction and Functional Exhaustion of T Cells in Patients With Coronavirus Disease 2019 (COVID-19). Front Immunol. 2020 May 1;11:827. doi: 10.3389/fimmu.2020.00827

146. Mathew D, Giles JR, Baxter AE, Oldridge DA, Greenplate AR, Wu JE, Alanio C, et al. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science. 2020;369(6508):eabc8511. doi: 10.1126/ science.abc8511

147. DiPiazza AT, Graham BS, Ruckwardt TJ. T cell immunity to SARS-CoV-2 following natural infection and vaccination. Biochem Biophys Res Commun. 2021;538:211-217. doi: 10.1016/j.bbrc.2020.10.060

148. Bastard P, Rosen LB, Zhang Q, Michailidis E, Hoffmann HH, Zhang Y, Dorgham K, et al. Autoantibodies against type I IFNs in patients with life-threatening COVID-19. Science. 2020;370(651 5):eabd4585. doi: 10.1126/science.abd4585

149. Puel A, Bastard P, Bustamante J, Casanova JL. Human autoantibodies underlying infectious diseases. J Exp Med. 2022;219(4):e20211387. doi: 10.1084/jem.20211387

150. Ning W, Xu W, Cong X, Fan H, Gilkeson G, Wu X, Hughes H, Jiang W. COVID-19 mRNA vaccine BNT162b2 induces autoantibodies against type I interferons in a healthy woman. J Autoimmun. 2022;132:102896. doi: 10.1016/j.jaut.2022.102896

151. Xu W, Wen X, Cong X, Jiang W. COVID-19 mRNA vaccine, but not a viral vector-based vaccine, promotes neutralizing anti-type I interferon autoantibody production in a small group of healthy individuals. J Med Virol. 2023;95(10):e29137. doi: 10.1002/jmv.29137

152. Kim H, Ahn HS, Hwang N, Huh Y, Bu S, Seo KJ, Kwon SH, et al. Epigenomic landscape exhibits interferon signaling suppression in the patient of myocarditis after BNT162b2 vaccination. Sci Rep. 2023;13(1):8926. doi: 10.1038/s41598-023-36070-y

153. Pilz S, Theiler-Schwetz V, Trummer C, Krause R, Ioannidis JPA. SARS-CoV-2 reinfections: Overview of efficacy and duration of natural and hybrid immunity. Environ Res. 2022 Jun;209:11291 1. doi: 10.1016/j.envres.2022.112911

154. Spinardi JR, Srivastava A. Hybrid Immunity to SARS-CoV-2 from Infection and Vaccination-Evidence Synthesis and Implications for New COVID-19 Vaccines. Biomedicines. 2023 Jan 27;11(2):370. doi: 10.3390/biomedicines11020370

155. Epsi NJ, Richard SA, Lindholm DA, Mende K, Ganesan A, Huprikar N, Lalani T, et al. Epidemiology, immunology, and clinical characteristics of emerging infectious diseases with pandemic potential COVID-19 Cohort Study Group. Understanding "hybrid immunity": comparison and predictors of humoral immune responses to Severe Acute Respiratory Syndrome Coronavirus 2 Infection (SARS-CoV-2) and Coronavirus Disease 2019 (COVID-19) vaccines. Clin Infect Dis. 2023 Feb 8;76(3):e439-e449. doi: 10.1093/cid/ciac392

156. Moore SC, Kronsteiner B, Longet S, Adele S, Deeks AS, Liu C, Dejnirattisai W, Reyes LS, et al; PITCH Consortium. Evolution of long-term vaccine-induced and hybrid immunity in healthcare workers after different COVID-19 vaccine regimens. Med. 2023;4(3):191-215.e9. doi: 10.1016/j.medj.2023.02.004

157. Angyal A, Longet S, Moore SC, Payne RP, Harding A, Tipton T, Rongkard P, et al.; PITCH Consortium. T-cell and antibody responses to first BNT162b2 vaccine dose in previously infected and SARS-CoV-2-naive UK health-care workers: a multicentre prospective cohort study. Lancet Microbe. 2022;3(1):e21-e31. doi: 10.1016/S2666-5247(21)00275-5

158. Frei A, Kaufmann M, Amati R, Butty Dettwiler A, von Wyl V, Annoni AM, Vincentini J, Pellaton C, Pantaleo G, Fehr JS, D'Acremont V, Bochud M, Albanese E, Puhan MA; Corona Immunitas Research Group. Development of hybrid immunity during a period of high incidence of Omicron infections. Int J Epidemiol. 2023;52(6):1696-1707. doi: 10.1093/ije/dyad098

159. Rubio-Casillas A, Redwan EM, Uversky VN. More antibodies are not always better: Fc effector functions play a critical role in SARS-CoV-2 infection and protection. Prog Mol Biol Transl Sci. 2025;213:413-447. doi: 10.1016/bs.pmbts.2025.0 2.001. See citation #175

160. Brisotto G, Montico M, Turetta M, Zanussi S, Cozzi MR, Vettori R, Boschian Boschin R, et al. Integration of Cellular and Humoral Immune Responses as an Immunomonitoring Tool for SARS-CoV-2 Vaccination in Healthy and Fragile Subjects. Viruses. 2023;15(6):1276. doi: 10.3390/v15061276

161. Debes AK, Xiao S, Colantuoni E, Egbert ER, Caturegli P, Gadala A, Milstone AM. Association of Vaccine Type and Prior SARS-CoV-2 Infection With Symptoms and Antibody Measurements Following Vaccination Among Health Care Workers. JAMA Intern Med. 2021;181(12):1660-1662. doi: 10.1001 /jamainternmed.2021.4580

162. Kobashi Y, Shimazu Y, Kawamura T, Nishikawa Y, Omata F, Kaneko Y, Kodama T, et al. Factors associated with anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein antibody titer and neutralizing activity among healthcare workers following vaccination with the BNT162b2 vaccine. PLoS One. 2022;17(6): e0269917. doi: 10.1371/journal.pone.0269917

163. Levy I, Levin EG, Olmer L, Regev-Yochay G, Agmon-Levin N, Wieder-Finesod A, Indenbaum V, et al. Correlation between Adverse Events and Antibody Titers among Healthcare Workers Vaccinated with BNT162b2 mRNA COVID-19 Vaccine. Vaccines (Basel). 2022;10(8):1220. doi: 10.3390/vaccines10081220

164. Naaber P, Tserel L, Kangro K, Sepp E, Jürjenson V, Adamson A, Haljasmägi L, et al. Dynamics of antibody response to BNT162b2 vaccine after six months: a longitudinal prospective study. Lancet Reg Health Eur. 2021;10:100208. doi: 10.1016/j.lanepe.2021.100208

165. Pozdnyakova V, Weber B, Cheng S, Ebinger JE. Review of Immunologic Manifestations of COVID-19 Infection and Vaccination. Heart Fail Clin. 2023;19(2):177-184. doi: 10.1016/j.hfc.2022.08.006

166. Rechavi Y, Shashar M, Lellouche J, Yana M, Yakubovich D, Sharon N. Occurrence of BNT162b2 Vaccine Adverse Reactions Is Associated with Enhanced SARS-CoV-2 IgG Antibody Response. Vaccines (Basel). 2021;9(9):977. doi: 10.3390/vacci nes9090977

167. Takeuchi M, Higa Y, Esaki A, Nabeshima Y, Nakazono A. Does reactogenicity after a second injection of the BNT162b2 vaccine predict spike IgG antibody levels in healthy Japanese subjects? PLoS One. 2021;16(9):e0257668. doi: 10.1371/jour nal.pone.0257668

168. Uwamino Y, Kurafuji T, Sato Y, Tomita Y, Shibata A, Tanabe A, Yatabe Y, et al.; Keio Donner Project Team. Young age, female sex, and presence of systemic adverse reactions are associated with high post-vaccination antibody titer after two doses of BNT162b2 mRNA SARS-CoV-2 vaccination: An observational study of 646 Japanese healthcare workers and university staff. Vaccine. 2022;40(7):1019-1025. doi: 10.1016/j.vac cine.2022.01.002

169. Kaplonek P, Cizmeci D, Fischinger S, Collier AR, Suscovich T, Linde C, Broge T, et al. mRNA-1273 and BNT162b2 COVID-19 vaccines elicit antibodies with differences in Fc-mediated effector functions. Sci Transl Med. 2022;14(645):eabm23 11. doi: 10.1126/scitranslmed.abm2311

170. Wang L, Davis PB, Kaelber DC, Volkow ND, Xu R. Comparison of mRNA-1273 and BNT162b2 Vaccines on Breakthrough SARS-CoV-2 Infections, Hospitalizations, and Death During the Delta-Predominant Period. JAMA. 2022 Feb 15;327 (7):678-680. doi: 10.1001/jama.2022.0210

171. Beatty AL, Peyser ND, Butcher XE, Cocohoba JM, Lin F, Olgin JE, Pletcher MJ, et al. Analysis of COVID-19 Vaccine Type and Adverse Effects Following Vaccination. JAMA Netw Open. 2021 Dec 1;4(12):e2140364. doi: 10.1001/jamanetwork open.2021.40364

172. Kitagawa H, Kaiki Y, Sugiyama A, Nagashima S, Kurisu A, Nomura T, Omori K, et al. Adverse reactions to the BNT162b2 and mRNA-1273 mRNA COVID-19 vaccines in Japan. J Infect Chemother. 2022 Apr;28(4):576-581. doi: 10.1016/ j.jiac.2021.12.034

173. Valera-Rubio MM, Sierra-Torres MIM, Castillejo García RR, Cordero-Ramos JJ, López-Márquez MRM, Cruz-Salgado ÓO, Calleja-Hernández MÁM. Adverse events reported after administration of BNT162b2 and mRNA-1273 COVID-19 vaccines among hospital workers: a cross-sectional survey-based study in a Spanish hospital. Expert Rev Vaccines. 2022 Apr;21(4):533-540. doi: 10.1080/14760584.2022.2022478

174. Chapin-Bardales J, Gee J, Myers T. Reactogenicity Following Receipt of mRNA-Based COVID-19 Vaccines. JAMA. 2021;325(21):2201-2202. doi: 10.1001/jama.2021.5374

175. Chapin-Bardales J, Myers T, Gee J, Shay DK, Marquez P, Baggs J, Zhang B, et al. Reactogenicity within 2 weeks after mRNA COVID-19 vaccines: Findings from the CDC v-safe surveillance system. Vaccine. 2021;39(48):7066-7073. doi: 10.1016/j. vaccine.2021.10.019

176. Lin CH, Chen TA, Chiang PH, Hsieh AR, Wu BJ, Chen PY, Lin KC, et al. Incidence and Nature of Short-Term Adverse Events following COVID-19 Second Boosters: Insights from Taiwan's Universal Vaccination Strategy. Vaccines (Basel). 2024;12(2): 149. doi: 10.3390/vaccines12020149

177. Urdaneta V, Esposito DB, Dharia P, Moraga MS, Anteyi K, Oduyebo-Omotosho T, Rossi M, et al. Global Safety Assessment of Adverse Events of Special Interest Following 2 Years of Use and 772 Million Administered Doses of mRNA-1273. Open Forum Infect Dis. 2024;11(3):ofae067. doi: 10.1093 /ofid/ofae067

178. Zohar T, Loos C, Fischinger S, Atyeo C, Wang C, Slein MD, Burke J, et al. Compromised Humoral Functional Evolution Tracks with SARS-CoV-2 Mortality. Cell. 2020;183(6):1508-1519.e12. doi: 10.1016/j.cell.2020.10.052

179. Zhang A, Stacey HD, D'Agostino MR, Tugg Y, Marzok A, Miller MS. Beyond neutralization: Fc-dependent antibody effector functions in SARS-CoV-2 infection. Nat Rev Immunol. 2023;23(6):381-396. doi: 10.1038/s41577-022-00813-1.

180. Bigay J, Le Grand R, Martinon F, Maisonnasse P. Vaccine-associated enhanced disease in humans and animal models: Lessons and challenges for vaccine development. Front Microbiol. 2022 Aug 10;13:932408. doi: 10.3389/fmicb.2022.932408

181. Gartlan C, Tipton T, Salguero FJ, Sattentau Q, Gorringe A, Carroll MW. Vaccine-Associated Enhanced Disease and Pathogenic Human Coronaviruses. Front Immunol. 2022 Apr 4;13:88 2972. doi: 10.3389/fimmu.2022.882972

182. Ebenig A, Muraleedharan S, Kazmierski J, Todt D, Auste A, Anzaghe M, Gömer A, et al. Vaccine-associated enhanced respiratory pathology in COVID-19 hamsters after TH2-biased immunization. Cell Rep. 2022 Aug 16;40(7):111214. doi: 10.1016/ j.celrep.2022.111214

183. Tunjungputri RN, Tetrasiwi EN, Veronica M, Pandelaki J, Ibrahim F, Nelwan EJ. Vaccine-Associated Disease Enhancement (VADE): Considerations in Postvaccination COVID-19. Case Rep Med. 2021 Oct 29;2021:9673453. doi: 10.115 5/2021/9673453

184. Rodríguez Y, Rojas M, Beltrán S, Polo F, Camacho-Domínguez L, Morales SD, Gershwin ME, et al. Autoimmune and autoinflammatory conditions after COVID-19 vaccination. New case reports and updated literature review. J Autoimmun. 2022 Oct;132:102898. doi: 10.1016/j.jaut.2022.102898

185. Rojas M, Herrán M, Ramírez-Santana C, Leung PSC, Anaya JM, Ridgway WM, Gershwin ME. Molecular mimicry and autoimmunity in the time of COVID-19. J Autoimmun. 2023 Sep;139:103070. doi: 10.1016/j.jaut.2023.103070

186. Talotta R. Do COVID-19 RNA-based vaccines put at risk of immune-mediated diseases? In reply to "potential antigenic cross-reactivity between SARS-CoV-2 and human tissue with a possible link to an increase in autoimmune diseases". Clin Immunol. 2021 Mar;224:108665. doi: 10.1016/j. clim.2021.108665

187. Akinosoglou K, Tzivaki I, Marangos M. Covid-19 vaccine and autoimmunity: Awakening the sleeping dragon. Clin Immunol. 2021 May;226: 108721. doi: 10.1016/j.clim.2021.108721

188. Polykretis P, Donzelli A, Lindsay JC, Wiseman D, Kyriakopoulos AM, Mörz M, Bellavite P, et al. Autoimmune inflammatory reactions triggered by the COVID-19 genetic vaccines in terminally differentiated tissues. Autoimmunity. 2023 Dec;56( 1):2259123. doi: 10.1080/08916934.2023.2259123

189. Hornsby H, Nicols AR, Longet S, Liu C, Tomic A, Angyal A, Kronsteiner B, et al. Omicron infection following vaccination enhances a broad spectrum of immune responses dependent on infection history. Nat Commun. 2023;14(1):5065. doi: 10.10 38/s41467-023-40592-4

190. Wang CW, Wu MY, Chen CB, Lin WC, Wu J, Lu CW, Chen WT, et al. Clinical characteristics and immune profiles of patients with immune-mediated alopecia associated with COVID-19 vaccinations. Clin Immunol. 2023;255:109737. doi: 10.1016/ j.clim.2023.109737.

191. Santos-Zas I, Lemarié J, Zlatanova I, Cachanado M, Seghezzi JC, Benamer H, Goube P, et al. Cytotoxic CD8+ T cells promote granzyme B-dependent adverse post-ischemic cardiac remodeling. Nat Commun. 2021;12(1):1483. doi: 10.1038/s414 67-021-21737-9

192. Shi Z, Du Q, Wang X, Wang J, Chen H, Lang Y, Kong L, Luo W, Yang M, Zhou H. Granzyme B in circulating CD8+ T cells as a biomarker of immunotherapy effectiveness and disability in neuromyelitis optica spectrum disorders. Front Immunol. 2022;13:1027158. doi: 10.3389/fimmu. 2022.1027158

193. Uzun S, Pant A, Bartoszek E, Gueguen P, Frei S, Heusler H, Arborelli I, et al. Analysis of Hyperexpanded T Cell Clones in SARS-CoV-2 Vaccine-Associated Liver Injury by Spatial Proteomics and Transcriptomics. Liver Int. 2025;45( 7):e70172. doi: 10.1111/liv.70172

194. Davis HE, McCorkell L, Vogel JM, Topol EJ. Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol. 2023;21(3): 133-146. doi: 10.1038/s41579-022-00846-2

195. Yong SJ, Liu S: Proposed subtypes of post-COVID-19 syndrome (or long-COVID) and their respective potential therapies. Rev Med Virol. 2022, 32:e2315, 10.1002/rmv.2315

196. Craddock V, Mahajan A, Spikes L, Krishnamachary B, Ram AK, Kumar A, Chen L, et al. Persistent circulation of soluble and extracellular vesicle-linked Spike protein in individuals with postacute sequelae of COVID-19. J Med Virol. 2023;95(2):e28568. doi: 10.1002/jmv.28568

197. Dhuli K, Medori MC, Micheletti C, Donato K, Fioretti F, Calzoni A, Praderio A, et al. Presence of viral spike protein and vaccinal spike protein in the blood serum of patients with long-COVID syndrome. Eur Rev Med Pharmacol Sci. 2023 Dec;27(6 Suppl): 13-19. doi: 10.26355/eurrev_202312_34685.

198. Arjun MC, Singh AK, Pal D, Das K, G A, Venkateshan M, Mishra B, Patro BK, et al. Characteristics and predictors of Long COVID among diagnosed cases of COVID-19. PLoS One. 2022;17(12):e0278825. doi: 10.1371/journal.pone. 0278825

199. Vogel G, Couzin-Frankel J. Rare link between coronavirus vaccines and Long Covid-like illness starts to gain acceptance. Science 2023; 381: 6653. https://doi.org/10.1126/science.adj5565

200. White JR, Abraham RL, Coleman WT, Pitre E, Stevenson MM, Kaplan JL, Goldberg AG, et al. SARS-CoV-2 Semi-Quantitative Total Antibody Correlates with Symptoms of Long COVID in Both Vaccinated and Unvaccinated Subjects. Preprints.org. Posted: 16 July 2025 doi:10.20944/preprints 202507.1303.v1

201. Diexer S, Klee B, Gottschick C, Xu C, Broda A, Purschke O, Binder M, et al. Association between virus variants, vaccination, previous infections, and post-COVID-19 risk. Int J Infect Dis. 2023;136:14-21. doi: 10.1016/j.ijid.2023.08.019

202. Bhargava A, Inslicht, S. Postacute sequelae of SARS-CoV-2 in the population: Risk factors and vaccines. Preprint. DOI: 10.21203/rs.3.rs-6175467/v1 https://doi.org/10.21203/rs.3.rs-6175467/v1

203. Scholkmann F, May CA. COVID-19, post-acute COVID-19 syndrome (PACS, "long COVID") and post-COVID-19 vaccination syndrome (PCVS, "post-COVIDvac-syndrome"): Similarities and differences. Pathol Res Pract. 2023;246:154497. doi: 10.1016/j.prp.2023.154497

204. Pfizer. Inc. (2021). 5.3.6 Cumulative analysis of post-authorization adverse event reports of PF-07302048 (BNT162b2) received through 28-Feb-2021 (reissued). https://www.phmpt.org/wp-content/uploads/2022/04/reissue_5.3.6-postmarketing-experience.pdf

205. Bowe B, Xie Y, Al-Aly Z. Post-acute sequelae of COVID-19 at 2 years. Nat Med. 2023;29(9):2347-2357. doi: 10.1038/s41591-023-02521-2.

206. Cheng KL, Yu WS, Wang YH, Ibarburu GH, Lee HL, Wei JC. Long-term Thyroid Outcomes After COVID-19 Vaccination: A Cohort Study of 2,333,496 Patients from the TriNetX Network. J Clin Endocrinol Metab. 2025: dgaf064. doi: 10.1210/clinem/dgaf064

207. Sumantri S, Rengganis I. Immunological dysfunction and mast cell activation syndrome in long COVID. Asia Pac Allergy. 2023;13(1):50-53. doi: 10.5415/apallergy.0000000000000022.

208. Zhang T, Li Z, Mei Q, Walline JH, Zhang Z, Liu Y, Zhu H, Du B. Cardiovascular outcomes in long COVID-19: a systematic review and meta-analysis. Front Cardiovasc Med. 2025;12:1450470. doi: 10.3389/fcvm.2025.1450470.

209. Alzahrani M, Alshathri AH, Alduraibi K, Alshathri AH, Alanazi TF, Alandijani H, Almajed JA, Wajdi KA. Long-Term Outcomes of COVID-19 Otolaryngology Symptoms in Saudi Arabia. Cureus. 2023;15(1):e33461. doi: 10.7759/cureus. 33461. PMID: 36751176; PMCID: PMC9899518.

210. Gambichler T, Boms S, Susok L, Dickel H, Finis C, Abu Rached N, Barras M, Stücker M, Kasakovski D. Cutaneous findings following COVID-19 vaccination: review of world literature and own experience. J Eur Acad Dermatol Venereol. 2022; 36(2):172-180. doi: 10.1111/jdv.17744.

211. Kazakou P, Paschou SA, Psaltopoulou T, Gavriatopoulou M, Korompoki E, Stefanaki K, Kanouta F, Kassi GN, Dimopoulos MA, Mitrakou A. Early and late endocrine complications of COVID-19. Endocr Connect. 2021;10(9):R229-R239. doi: 10.1530/EC-21-0184

212. Pollack B, von Saltza E, McCorkell L, Santos L, Hultman A, Cohen AK, Soares L. Female reproductive health impacts of Long COVID and associated illnesses including ME/CFS, POTS, and connective tissue disorders: a literature review. Front Rehabil Sci. 2023;4:1122673. doi: 10.3389/ fresc.2023.1122673

213. Sandoval MN, Klawans MR, Bach MA, Mikhail J, Graviss EA, Cao T, Parchem JG, Husain J, Boerwinkle E. COVID-19 infection history as a risk factor for early pregnancy loss: results from the electronic health record-based Southeast Texas COVID and Pregnancy Cohort Study. BMC Med. 2025 May 9;23(1):274. doi: 10.1186/s12916-025-04094-y.

214. Manniche V, Fürst T, Schmeling M, Gilthorpe JD, Hansen PR. Rates of successful conceptions according to COVID-19 vaccination status: Data from the Czech Republic. Int J Risk Saf Med. 2025 Jun 19:9246479251353384. doi: 10.1177/092464 79251353384

215. Thorp JA, Rogers C, Deskevich MP, Tankersley S, Benavides A, Redshaw MD, McCullough PA. COVID-19 vaccines: The impact on pregnancy outcomes and menstrual function. J Am Phys Surg. 2023; 28(1). https://www.jpands.org/vol28no1/thorp.pdf

216. Madaan S, Talwar D, Jaiswal A, Kumar S, Acharya N, Acharya S, Dewani D. Post-COVID-19 menstrual abnormalities and infertility: Repercussions of the pandemic. J Educ Health Promot. 2022; 11:170. doi: 10.4103/jehp.jehp_1200_21

217. Centers for Disease Control and Prevention. COVID-19 VaST Work Group Report – May 17, 2021. 2021. [cited 2023 January 5]; Available from: https://www.cdc.gov/vaccines/acip/work-groups-vast/report-2021-05-17.html

218. Lindner D, Fitzek A, Bräuninger H, Aleshcheva G, Edler C, Meissner K, Scherschel K, et al. Association of cardiac infection with SARS-CoV-2 in confirmed COVID-19 autopsy cases. JAMA Cardiol. 2020;5(11):1281-1285. doi:10.1001/jamacardio.2020.3551

219. Schreckenberg R, Woitasky N, Itani N, Czech L, Ferdinandy P, Schulz R. Cardiac side effects of RNA-based SARS-CoV-2 vaccines: Hidden cardiotoxic effects of mRNA-1273 and BNT162b2 on ventricular myocyte function and structure. Br J Pharmacol. 2024;181(3):345-361. doi: 10.1111/bph.16262

220. Buergin N, Lopez-Ayala P, Hirsiger JR, Mueller P, Median D, Glarner N, Rumora K, et al. Sex-specific differences in myocardial injury incidence after COVID-19 mRNA-1273 booster vaccination. Eur J Heart Fail. 2023;25(10):1871-1881. doi: 10.1002/ejhf.2978

221. Mansanguan S, Charunwatthana P, Piyaphanee W, Dechkhajorn W, Poolcharoen A, Mansanguan C. Cardiovascular Manifestation of the BNT162b2 mRNA COVID-19 Vaccine in Adolescents. Trop Med Infect Dis. 2022;7(8):196. doi: 10.3390/trop icalmed7080196

222. Daniels CJ, Rajpal S, Greenshields JT, Rosenthal GL, Chung EH, Terrin M, Jeudy J, et al.; Big Ten COVID-19 Cardiac Registry Investigators. Prevalence of Clinical and Subclinical Myocarditis in Competitive Athletes With Recent SARS-CoV-2 Infection: Results From the Big Ten COVID-19 Cardiac Registry. JAMA Cardiol. 2021;6(9):1078-1087. doi: 10.1001/jamacardio.2021.2065

223. Foltran D, Delmas C, Flumian C, De Paoli P, Salvo F, Gautier S, Drici MD, et al. Myocarditis and pericarditis in adolescents after first and second doses of mRNA COVID-19 vaccines. Eur Heart J Qual Care Clin Outcomes. 2022;8(2):99-103. doi: 10.1093/ehjqcco/qcab090

224. Karlstad Ø, Hovi P, Husby A, Härkänen T, Selmer RM, Pihlström N, Hansen JV, et al. SARS-CoV-2 Vaccination and Myocarditis in a Nordic Cohort Study of 23 Million Residents. JAMA Cardiol. 2022;7(6):600-612. doi: 10.1001/jamaca rdio.2022.0583

225. Buchan SA, Seo CY, Johnson C, Alley S, Kwong JC, Nasreen S, Calzavara A, et al. Epidemiology of Myocarditis and Pericarditis Following mRNA Vaccination by Vaccine Product, Schedule, and Interdose Interval Among Adolescents and Adults in Ontario, Canada. JAMA Netw Open. 2022;5(6):e2218505. doi: 10.1001/ja manetworkopen.2022.18505

226. Gao J, Feng L, Li Y, Lowe S, Guo Z, Bentley R, Xie C, et al. A systematic review and meta-analysis of the association between SARS-CoV-2 vaccination and myocarditis or pericarditis. Am J Prev Med. 20 23;64(2):275-284. doi: 10.1016/j.amepre.2022.09.002

227. Bohné M, Bohnen S, Willems S, Klingel K, Kivelitz D, Bahlmann E. Acute Lymphocytic Myocarditis in a Young Male Post-COVID-19. Case Rep Cardiol. 2023 Jun 22;2023:7646962. doi: 10.1 155/2023/7646962

228. Fishman B, Goitein O, Berkovitch A, Rahav G, Matetzky S. First report of myocarditis in two patients with COVID-19 Omicron variant: case report. Eur Heart J Case Rep. 2022;6(10):ytac407. doi: 10.1093/ehjcr/ytac407

229. Patrignani A, Schicchi N, Calcagnoli F, Falchetti E, Ciampani N, Argalia G, Mariani A. Acute myocarditis following Comirnaty vaccination in a healthy man with previous SARS-CoV-2 infection. Radiol Case Rep. 2021;16(11):3321-3325. doi: 10.1016/j.radcr.2021.07.082

230. Shime M, Nozaki Y, Morita A, Ishiodori T, Murakami T, Yamasaki H, Yamamoto M, Takada H. Life-threatening severe acute respiratory syndrome coronavirus-2 mRNA vaccine-associated myocarditis after COVID-19 myocarditis. J Paediatr Child Health. 2023; 59(12):1319-1322. doi: 10.1111/jpc.16498

231. Etuk AS, Jackson IN, Panayiotou H. A Rare Case of Myocarditis After the First Dose of Moderna Vaccine in a Patient With Two Previous COVID-19 Infections. Cureus. 2022;14(5):e24802. doi: 10.7759/cureus.24802

232. Patone M, Mei XW, Handunnetthi L, Dixon S, Zaccardi F, Shankar-Hari M, Watkinson P, et al. Risk of Myocarditis After Sequential Doses of COVID-19 Vaccine and SARS-CoV-2 Infection by Age and Sex. Circulation. 2022;146(10):743-754. doi: 10.1161/CI RCULATIONAHA.122.059970

233. Bourdon PS, Pantazatos SP. Why a major study on myocarditis risk following COVID vaccination should not influence public-health policy. Front. Med. 2023; 10:1126945. doi: 10.3389/fmed.2023. 1126945

234. Blasco A, Royuela A, García-Gómez S, Gómez-Lozano N, Sánchez-Arjona A, de la Fuente J, Anel J, ,et al. Association of SARS-CoV-2 immunoserology and vaccination status with myocardial infarction severity and outcome. Vaccine. 2024;42(26):1263 05. doi: 10.1016/j.vaccine.2024.126305

235. Yun C, Lee Y, Heo SJ, Kim N, Jung I. The impact of COVID-19 status and vaccine type following the first dose on acute heart disease: A nationwide retrospective cohort study in South Korea. Epidemiol Infect. 2024;152:e134. doi: 10.1017/S0950268824001213

236. Cianci R, Caldarelli M, Rio P, Pignataro G, Sacco Fernandez M, Ocarino F, Della Polla DA, et al. Outcomes of Patients with Heart Failure Hospitalized for COVID-19-A Study in a Tertiary Italian Center. Diseases. 2024;12(12):337. doi: 10.3390/diseases12120337

237. Al-Aly Z, Bowe B, Xie Y. Long COVID after breakthrough SARS-CoV-2 infection. Nat Med. 2022;28(7):1461-1467. doi: 10.1038/s41591-022-01840-0

238. Yan VKC, Zhang Y, Yang D, Li X, Mak LY, Lai FTT, Chui CSL, et al. Post-acute sequelae of hospitalised COVID-19 re-infection compared with hospitalised first-time infection: a population-based retrospective cohort study in Hong Kong. BMJ Public Health. 2025;3(1):e000833. doi: 10.11 36/bmjph-2023-000833

239. Rodrigues NCP, Andrade MKN. Evaluation of post-COVID mortality risk in cases classified as severe acute respiratory syndrome in Brazil: a longitudinal study for medium and long term. Front Med (Lausanne). 2024;11:1495428. doi: 10.3389 /fmed.2024.1495428. Retraction in: Front Med (Lausanne). 2025 May 16;12:1619451. doi: 10.3389/fmed.2025.1619451

240. Mendonça Guimarães R, Barcellos C, Gracie R, Xavier DR, Pedroso MM, Magalhães MAFM. Commentary: Evaluation of post-COVID mortality risk in cases classified as severe acute respiratory syndrome in Brazil: a longitudinal study for medium and long term. Front Med (Lausanne). 2025;12:155 8299. doi: 10.3389/fmed.2025.1558299

241. Varchetta S, Golfetto FS, Bono P, Callegaro A, Fabbris T, Favalli A, Crosti M, et al. Reduced spike specific T-cell responses in COVID-19 vaccinated subjects undergoing SARS-CoV-2 breakthrough infection. Front Immunol. 2025;16:1657082. doi: 10.3389/fimmu.2025.1657082

242. Yamamoto K. Adverse effects of COVID-19 vaccines and measures to prevent them. Virol J. 2022;19(1):100. doi: 10.1186/s12985-022-01831-0

243. Lamprinou M, Sachinidis A, Stamoula E, Vavilis T, Papazisis G. COVID-19 vaccines adverse events: potential molecular mechanisms. Immunol Res. 2023;71(3):356-372. doi: 10.1007/s12026-023-093 57-5. Epub 2023 Jan 6

244. Lyons-Weiler J. Pathogenic priming likely contributes to serious and critical illness and mortality in COVID-19 via autoimmunity. J Transl Autoimmun. 2020 Apr 9;3:100051. doi: 10.1016/ j.jtauto.2020.100051.

245. Kim SJ, Rhee TG, Shim SR. Autoimmune and auto-inflammatory adverse events after COVID-19 vaccination in the United States. Clin Immunol. 20 24;259:109882. doi: 10.1016/j.clim.2023.109882

246. Xu L, Ma Z, Li Y, Pang Z, Xiao S. Antibody dependent enhancement: Unavoidable problems in vaccine development. Adv Immunol. 2021;151: 99-133. doi: 10.1016/bs.ai.2021.08.003

247. Plūme J, Galvanovskis A, Šmite S, Romanchikova N, Zayakin P, Linē A. Early and strong antibody responses to SARS-CoV-2 predict disease severity in COVID-19 patients. J Transl Med. 2022;20(1): 176. doi: 10.1186/s12967-022-03382-y

248. Afrin LB, Weinstock LB, Molderings GJ. Covid-19 hyperinflammation and post-Covid-19 illness may be rooted in mast cell activation syndrome. Int J Infect Dis. 2020;100:327-332. doi: 10.1016/j.ijid. 2020.09.016

249. da Silveira Gorman R, Syed IU. Connecting the Dots in Emerging Mast Cell Research: Do Factors Affecting Mast Cell Activation Provide a Missing Link between Adverse COVID-19 Outcomes and the Social Determinants of Health? Med Sci (Basel). 2022;10(2):29. doi: 10.3390/medsci10020029.

250. Faksova K, Walsh D, Jiang Y, Griffin J, Phillips A, Gentile A, Kwong JC, et al. COVID-19 vaccines and adverse events of special interest: A multinational Global Vaccine Data Network (GVDN) cohort study of 99 million vaccinated individuals. Vaccine. 2024;42(9):2200-2211. doi: 10.1016/j.vaccine.2024.01.100

251. Yan MM, Zhao H, Li ZR, Chow JW, Zhang Q, Qi YP, Wu SS, et al. Serious adverse reaction associated with the COVID-19 vaccines of BNT162b2, Ad26.COV2.S, and mRNA-1273: Gaining insight through the VAERS. Front Pharmacol. 2022;13:921760. doi: 10.3389/fphar. 2022.921760

252. Classen B. US COVID-19 vaccines proven to cause more harm than good based on pivotal clinical trial data analyzed using the proper scientific endpoint, “all cause severe morbidity”. Trends in Internal Medicine 2021; 1:1-6. URL: https://scivisionpub.com/pdfs/us-covid19-vaccines-proven-to-cause-more-harm-than-good-based-on-pivotal-clinical-trial-data-analyzed-using-the-proper-scientific--1811.pdf

253. Acevedo-Whitehouse K, Bruno R. Potential health risks of mRNA-based vaccine therapy: A hypothesis. Med Hypotheses. 2023;171:111015. doi: 10.1016/j.mehy.2023.111015

254. Abdulkader MA Sr, Merza MA. Immediate and Long-Term Adverse Events of COVID-19 Vaccines: A One-Year Follow-Up Study From the Kurdistan Region of Iraq. Cureus. 2023;15(10):e47670. doi: 10.7759/cureus.47670

255. Fraiman J, Erviti J, Jones M, Greenland S, Whelan P, Kaplan RM, Doshi P. Serious adverse events of special interest following mRNA COVID-19 vaccination in randomized trials in adults. Vaccine. 2022;40(40):5798-5805. doi: 10.1016/j.va ccine.2022.08.036.

[Total references: 271. The full list, including the remaining 21, is provided in the PDF.]