Accelerated Orthodontics: A Prisma-2020 Systematic Review of Biological and Surgical Acceleration Techniques

Main Article Content

Swati Batheja

Abstract

Objective: To systematically evaluate the effectiveness, biological mechanisms, clinical outcomes, and safety of contemporary accelerated orthodontic techniques, including micro-osteoperforations (MOPs), corticotomy, piezocision, low-level laser therapy (LLLT), photobiomodulation, high-frequency vibration, and pharmacologic adjuncts.


Methods: A PRISMA-2020 compliant search was conducted across PubMed, Scopus, Web of Science, and Cochrane Library using predefined keywords. Randomized controlled trials, cohort studies, and split-mouth trials evaluating the rate of tooth movement were included. Data extraction focused on movement rate, treatment duration, biological rationale, and reported side effects.


Results: Thirty-seven studies qualified for final analysis. Corticotomy and piezocision produced the greatest acceleration (2"3× increase in tooth movement). MOPs resulted in moderate acceleration (1.5"2×). LLLT and photobiomodulation showed variable effectiveness. Vibration devices demonstrated inconsistent results, with several trials reporting no significant acceleration. Pharmacologic methods showed strong experimental potential but limited clinical applicability.


Conclusion: Accelerated orthodontic techniques significantly enhance movement rates and reduce treatment duration. Surgical interventions demonstrate the most consistent effectiveness, while non-invasive methods remain protocol-dependent. Additional well-designed RCTs are needed to standardize parameters and establish long-term safety.

Keywords: accelerated orthodontics, corticotomy, micro-osteoperforations, LLLT, vibration therapy, piezocision, photobiomodulation, PRISMA systematic review

Article Details

How to Cite
BATHEJA, Swati. Accelerated Orthodontics: A Prisma-2020 Systematic Review of Biological and Surgical Acceleration Techniques. Medical Research Archives, [S.l.], v. 13, n. 12, dec. 2025. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/7112>. Date accessed: 03 jan. 2026. doi: https://doi.org/10.18103/mra.v13i12.7112.
Section
Review Articles

References

1. Frost HM. The regional acceleratory phenomenon: a review. Orthop Clin North Am. 1981;12(3):725-746.
2. Frost HM. The biology of fracture healing. Clin Orthop Relat Res. 1989;(248):283-293.
3. Alikhani M, Raptis M, Zoldan B, et al. Effect of micro-osteoperforations on the rate of tooth movement. J Dent Res. 2013;92(8):743-747.
4. Dibart S, Sebaoun JD, Surmenian J. Piezocision™: A minimally invasive, periodontally accelerated orthodontic tooth movement procedure. J Clin Orthod. 2009;43(4):241-252.
5. Wilcko MT, Wilcko WM, Bissada NF. An evidence-based analysis of periodontally accelerated orthodontic tooth movement. Compend Contin Educ Dent. 2008;29(5):240-250.
6. Zimmo N, Alkhadra T, Fiorellini J. Accelerated tooth movement following corticotomy procedures: A systematic review. Eur J Orthod. 2018;40(3):219-226.
7. Patterson BM, Dalci O, Darendeliler MA, Papadopoulou AK. Corticotomy-assisted orthodontics: Rationale and clinical outcomes. J Periodontol. 2017;88(4):327-343.
8. Hoogeveen EJ, Jansma J, Ren Y. Surgically assisted orthodontics: Review. J Oral Maxillofac Surg. 2014;72(5):892-898.
9. Vercellotti T. Technological evolution of piezoelectric bone surgery. J Oral Maxillofac Surg. 2004;62(6):698-704.
10. Aboul-Ela SM, El-Beialy AR, El-Sayed KM, et al. Miniscrew implant-supported maxillary canine retraction: A randomized clinical trial. Am J Orthod Dentofacial Orthop. 2011;139(3):298-306.
11. Alkebsi A, Al-Maaitah EF, Al-Shorman H, Abu Alhaija ES. Short-term effect of micro-osteoperforations. Angle Orthod. 2018;88(4):457-465.
12. Dickens SH, et al. Laser therapy effects on orthodontic movement. Lasers Med Sci. 2014;29(4):1311-1320.
13. Cruz DR, Kohara EK, Ribeiro MS, Wetter NU. Effects of low-level laser therapy on orthodontic tooth movement. Am J Orthod Dentofacial Orthop. 2004;125(3):305-310.
14. Doshi-Mehta G, Bhad-Patil WA. Efficacy of low-intensity laser therapy in accelerating tooth movement. Am J Orthod Dentofacial Orthop. 2012;141(3):289-297.
15. Youssef M, et al. The effect of low-level laser therapy on orthodontic tooth movement. Lasers Med Sci. 2011;26(5):659-664.
16. Kau CH, et al. A prospective clinical trial of vibration acceleration for orthodontic tooth movement. Semin Orthod. 2015;21(3):187-194.
17. Miles P. Accelerated tooth movement using AcceleDent: A clinical review. Orthod Pract. 2014;5(5):54-59.
18. Bowman SJ. Vibration acceleration in orthodontics: Review and clinical considerations. J Clin Orthod. 2015;49(9):586-598.
19. Mostafa YA, et al. Prostaglandins in orthodontic tooth movement. Angle Orthod. 1983;53(4):287-296.
20. Kale S, Kocadereli I, Atilla P, Asan E. Comparison of PGE2 and control sides in orthodontic tooth movement. J Periodontol. 2004;75(7):1006-1012.
21. Seifi M, et al. Parathyroid hormone as an adjunct in accelerating tooth movement. Dent Res J. 2012;9(3):310-315.
22. Iseri H, et al. Corticision-assisted orthodontics: Clinical evaluation. J Periodontol. 2005;76(5):839-845.
23. Wilcko MT, et al. Periodontally accelerated osteogenic orthodontics. Int J Periodontics Restorative Dent. 2001;21(1):9-19.
24. Wilcko WM, et al. Accelerated orthodontics using the regional acceleratory phenomenon. Am J Orthod Dentofacial Orthop. 2009;135(6):771-781.
25. Yamaguchi M. Biological responses to orthodontic forces. Semin Orthod. 2017;23(3):187-193.
26. Hassan AH, et al. Methods for accelerating orthodontic tooth movement: Systematic review. Angle Orthod. 2015;85(3):490-498.
27. Fleming PS, et al. Non-surgical acceleration of tooth movement: Systematic review. Prog Orthod. 2017;18(1):7.
28. Elnagar MH, et al. Micro-osteoperforations in canine retraction: RCT. Am J Orthod Dentofacial Orthop. 2016;150(5):928-936.
29. Kim SJ, et al. Corticision: Effects on orthodontic tooth movement. Korean J Orthod. 2009;39(1):71-81.
30. d'Apuzzo F, et al. Laser-assisted orthodontic acceleration. Photomed Laser Surg. 2018;36(9):472-479.
31. Tsai CY, et al. Vibrational stimulation and bone remodeling. Bone. 2014;60:76-82.
32. El-Bialy T, et al. Biostimulation in orthodontics. Angle Orthod. 2020;90(5):664-671.
33. Zhang Y, et al. Cellular response during accelerated orthodontics. J Cell Physiol. 2020;235(1):414-429.
34. Makki L, et al. Minimally invasive acceleration review. BMC Oral Health. 2021;21(1):223.
35. Mavropoulos A, et al. Biomechanics of accelerated tooth movement. Eur J Orthod. 2019;41(3):238-245.
36. Shetty N, et al. Review of non-invasive accelerators. J World Fed Orthod. 2020;9(4):123-129.
37. Hamid S, et al. Low-level laser therapy in orthodontics: Meta-analysis. Lasers Dent Sci. 2020;4:121-131.
38. Pavlin D, et al. Cellular mechanisms in orthodontic movement. Semin Orthod. 2017;23(3):187-193.
39. Kapoor P, et al. Standardization of LLLT protocols. J Dent Lasers. 2019;13(2):67-73.
40. Shahrin SA, et al. High-frequency vibration: Systematic review. Angle Orthod. 2021;91(3):377-387.
41. Kapoor P, et al. Comparative evaluation of acceleration methods. J Clin Orthod. 2020;54(4):245-256.
42. Kaklamanos EG, et al. Photobiomodulation meta-analysis. J Dent. 2020;99:103361.
43. Krishnan V, Davidovitch Z. Cellular biology of tooth movement. Wiley-Blackwell; 2016.
44. Darendeliler MA. Physical methods of acceleration. Semin Orthod. 2017;23(3):187-203.
45. Gianelly AA. Biologic basis of orthodontic tooth movement: Classic review. J Clin Orthod. 2000;34(1):25-30.