Accelerated Orthodontics: A Prisma-2020 Systematic Review of Biological and Surgical Acceleration Techniques
Main Article Content
Abstract
Objective: To systematically evaluate the effectiveness, biological mechanisms, clinical outcomes, and safety of contemporary accelerated orthodontic techniques, including micro-osteoperforations (MOPs), corticotomy, piezocision, low-level laser therapy (LLLT), photobiomodulation, high-frequency vibration, and pharmacologic adjuncts.
Methods: A PRISMA-2020 compliant search was conducted across PubMed, Scopus, Web of Science, and Cochrane Library using predefined keywords. Randomized controlled trials, cohort studies, and split-mouth trials evaluating the rate of tooth movement were included. Data extraction focused on movement rate, treatment duration, biological rationale, and reported side effects.
Results: Thirty-seven studies qualified for final analysis. Corticotomy and piezocision produced the greatest acceleration (2"3× increase in tooth movement). MOPs resulted in moderate acceleration (1.5"2×). LLLT and photobiomodulation showed variable effectiveness. Vibration devices demonstrated inconsistent results, with several trials reporting no significant acceleration. Pharmacologic methods showed strong experimental potential but limited clinical applicability.
Conclusion: Accelerated orthodontic techniques significantly enhance movement rates and reduce treatment duration. Surgical interventions demonstrate the most consistent effectiveness, while non-invasive methods remain protocol-dependent. Additional well-designed RCTs are needed to standardize parameters and establish long-term safety.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Frost HM. The biology of fracture healing. Clin Orthop Relat Res. 1989;(248):283-293.
3. Alikhani M, Raptis M, Zoldan B, et al. Effect of micro-osteoperforations on the rate of tooth movement. J Dent Res. 2013;92(8):743-747.
4. Dibart S, Sebaoun JD, Surmenian J. Piezocision™: A minimally invasive, periodontally accelerated orthodontic tooth movement procedure. J Clin Orthod. 2009;43(4):241-252.
5. Wilcko MT, Wilcko WM, Bissada NF. An evidence-based analysis of periodontally accelerated orthodontic tooth movement. Compend Contin Educ Dent. 2008;29(5):240-250.
6. Zimmo N, Alkhadra T, Fiorellini J. Accelerated tooth movement following corticotomy procedures: A systematic review. Eur J Orthod. 2018;40(3):219-226.
7. Patterson BM, Dalci O, Darendeliler MA, Papadopoulou AK. Corticotomy-assisted orthodontics: Rationale and clinical outcomes. J Periodontol. 2017;88(4):327-343.
8. Hoogeveen EJ, Jansma J, Ren Y. Surgically assisted orthodontics: Review. J Oral Maxillofac Surg. 2014;72(5):892-898.
9. Vercellotti T. Technological evolution of piezoelectric bone surgery. J Oral Maxillofac Surg. 2004;62(6):698-704.
10. Aboul-Ela SM, El-Beialy AR, El-Sayed KM, et al. Miniscrew implant-supported maxillary canine retraction: A randomized clinical trial. Am J Orthod Dentofacial Orthop. 2011;139(3):298-306.
11. Alkebsi A, Al-Maaitah EF, Al-Shorman H, Abu Alhaija ES. Short-term effect of micro-osteoperforations. Angle Orthod. 2018;88(4):457-465.
12. Dickens SH, et al. Laser therapy effects on orthodontic movement. Lasers Med Sci. 2014;29(4):1311-1320.
13. Cruz DR, Kohara EK, Ribeiro MS, Wetter NU. Effects of low-level laser therapy on orthodontic tooth movement. Am J Orthod Dentofacial Orthop. 2004;125(3):305-310.
14. Doshi-Mehta G, Bhad-Patil WA. Efficacy of low-intensity laser therapy in accelerating tooth movement. Am J Orthod Dentofacial Orthop. 2012;141(3):289-297.
15. Youssef M, et al. The effect of low-level laser therapy on orthodontic tooth movement. Lasers Med Sci. 2011;26(5):659-664.
16. Kau CH, et al. A prospective clinical trial of vibration acceleration for orthodontic tooth movement. Semin Orthod. 2015;21(3):187-194.
17. Miles P. Accelerated tooth movement using AcceleDent: A clinical review. Orthod Pract. 2014;5(5):54-59.
18. Bowman SJ. Vibration acceleration in orthodontics: Review and clinical considerations. J Clin Orthod. 2015;49(9):586-598.
19. Mostafa YA, et al. Prostaglandins in orthodontic tooth movement. Angle Orthod. 1983;53(4):287-296.
20. Kale S, Kocadereli I, Atilla P, Asan E. Comparison of PGE2 and control sides in orthodontic tooth movement. J Periodontol. 2004;75(7):1006-1012.
21. Seifi M, et al. Parathyroid hormone as an adjunct in accelerating tooth movement. Dent Res J. 2012;9(3):310-315.
22. Iseri H, et al. Corticision-assisted orthodontics: Clinical evaluation. J Periodontol. 2005;76(5):839-845.
23. Wilcko MT, et al. Periodontally accelerated osteogenic orthodontics. Int J Periodontics Restorative Dent. 2001;21(1):9-19.
24. Wilcko WM, et al. Accelerated orthodontics using the regional acceleratory phenomenon. Am J Orthod Dentofacial Orthop. 2009;135(6):771-781.
25. Yamaguchi M. Biological responses to orthodontic forces. Semin Orthod. 2017;23(3):187-193.
26. Hassan AH, et al. Methods for accelerating orthodontic tooth movement: Systematic review. Angle Orthod. 2015;85(3):490-498.
27. Fleming PS, et al. Non-surgical acceleration of tooth movement: Systematic review. Prog Orthod. 2017;18(1):7.
28. Elnagar MH, et al. Micro-osteoperforations in canine retraction: RCT. Am J Orthod Dentofacial Orthop. 2016;150(5):928-936.
29. Kim SJ, et al. Corticision: Effects on orthodontic tooth movement. Korean J Orthod. 2009;39(1):71-81.
30. d'Apuzzo F, et al. Laser-assisted orthodontic acceleration. Photomed Laser Surg. 2018;36(9):472-479.
31. Tsai CY, et al. Vibrational stimulation and bone remodeling. Bone. 2014;60:76-82.
32. El-Bialy T, et al. Biostimulation in orthodontics. Angle Orthod. 2020;90(5):664-671.
33. Zhang Y, et al. Cellular response during accelerated orthodontics. J Cell Physiol. 2020;235(1):414-429.
34. Makki L, et al. Minimally invasive acceleration review. BMC Oral Health. 2021;21(1):223.
35. Mavropoulos A, et al. Biomechanics of accelerated tooth movement. Eur J Orthod. 2019;41(3):238-245.
36. Shetty N, et al. Review of non-invasive accelerators. J World Fed Orthod. 2020;9(4):123-129.
37. Hamid S, et al. Low-level laser therapy in orthodontics: Meta-analysis. Lasers Dent Sci. 2020;4:121-131.
38. Pavlin D, et al. Cellular mechanisms in orthodontic movement. Semin Orthod. 2017;23(3):187-193.
39. Kapoor P, et al. Standardization of LLLT protocols. J Dent Lasers. 2019;13(2):67-73.
40. Shahrin SA, et al. High-frequency vibration: Systematic review. Angle Orthod. 2021;91(3):377-387.
41. Kapoor P, et al. Comparative evaluation of acceleration methods. J Clin Orthod. 2020;54(4):245-256.
42. Kaklamanos EG, et al. Photobiomodulation meta-analysis. J Dent. 2020;99:103361.
43. Krishnan V, Davidovitch Z. Cellular biology of tooth movement. Wiley-Blackwell; 2016.
44. Darendeliler MA. Physical methods of acceleration. Semin Orthod. 2017;23(3):187-203.
45. Gianelly AA. Biologic basis of orthodontic tooth movement: Classic review. J Clin Orthod. 2000;34(1):25-30.