Urban and Peri-Urban Agriculture for Improving Human Nutrition and Protecting Planetary Processes
Main Article Content
Abstract
Almost 55% of the world population lives in cities which may increase to 70% by 2050. Among global regions experiencing rapid urbanization include Sub-Saharan Africa, South Asia, Latin America and the Caribbean and others with rapidly growing population. Thus, rapid urbanization in these regions is an important factor affecting food and nutritional insecurity on the one hand and environmental pollution on the other. Not only are these regions the primary driver of urban and peri-urban agriculture, but are also prone to water contamination and air pollution with adverse effects on human health and wellbeing. Thus, judicious planning is important to reducing risks of soil contamination, plastic pollution and issues emerging from cycling of grey and black water and using of compost from city biomass waste. A prudent strategy is to grow 10 to 20% of the food consumed in the urban centers within the city limits by practicing science-based urban and peri-urban agriculture. The ever-growing urban population is also polluting environment, degrading soil and water resources, allocating large resources to import food into the cities, while adversely affecting overall health of the Planet Earth. Modern version of urban and peri-urban agriculture include home gardens, roof top gardens, community gardens, green houses, and sky farming in multistory-glass building used to practice soil-less culture such as aquaculture, hydroponics, and aeroponics. This article also deliberates challenges to adoption of innovative and safe practices of urban and peri-urban agriculture. However, there is a strong need for conducing site or soil-specific research in regard to biophysical and socio-economic factors. The issue of land tenure is among the major barriers related to socio-economic factors and which may need pertinent policy interventions. Innovative research is needed on managing soil health, aimed at reducing risks of contamination by heavy metals (lead, arsenic mercury, chromium, uranium, arsenic etc.). Thus, growing safe and healthy food is a major issue in urban and peri-urban agriculture.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
https://doi.org/10.4060/cd6008en.
2. Li, X., Zhou, Y., Hejazi, M., Wise, M., Vernon, C., Iyer, G., & Chen, W. (2021). Global urban growth between 1870 and 2100 from integrated high resolution mapped data and urban dynamic modeling. Communications Earth & Environment, 2(1), 201.
https://doi.org/10.1038/s43247-021-00273-w
3. Ritchie, H., Samborska, V., & Roser, M. (2024). Urbanization. Our world in data.
https://ourworldindata.org/urbanization.
4. Säumel, I., Reddy, S., Wachtel, T., Schlecht, M., & Ramos-Jiliberto, R. (2022). How to feed the cities? Co-creating inclusive, healthy and sustainable city region food systems. Frontiers in Sustainable Food Systems, 6.
https://doi.org/10.3389/fsufs.2022.909899
5. Hoornweg, D., & Pope, K. (2016). Population predictions for the world’s largest cities in the 21st century. Environment & Urbanization, 29(1), 195-216. https://doi.org/10.1177/0956247816663557 (Original work published 2017)
6. Mietz, L. K., Civit, B. M., & Arena, A. P. (2024). Life cycle assessment to evaluate the sustainability of urban agriculture: opportunities and challenges. Agroecology and Sustainable Food Systems, 48(7), 983-1007.
https://doi.org/10.1080/21683565.2024.2344025.
7. Lee-Smith, D. (2014). The dynamics of urban and peri-urban agriculture. In Digging Deeper: Inside Africa’s Agricultural, Food and Nutrition Dynamics (pp. 197-216). Brill. ISBN: 978-90-04-28268-1.
8. Mietz, L. K., Civit, B. M., & Arena, A. P. (2023). Cultivating communities in Mendoza, Argentina: Exploring social aspects of urban agriculture. https:// DOI: 10.2478/environ-2023-0020.
9. Crush, J., Frayne, B., & Pendleton, W. (2012). The crisis of food insecurity in African cities. Journal of Hunger & Environmental Nutrition, 7(2-3), 271-292.
https://doi.org/10.1080/19320248.2012.702448
10. Satterthwaite, D., McGranahan, G., & Tacoli, C. (2010). Urbanization and its implications for food and farming. Philosophical transactions of the royal society B: biological sciences, 365(1554), 2809-2820.
https://doi.org/10.1098/rstb.2010.0136
11. Dinku, A. M., Mekonnen, T. C., & Adilu, G. S. (2023). Urban food systems: Factors associated with food insecurity in the urban settings evidence from Dessie and Combolcha cities, north-central Ethiopia. Heliyon, 9(3).
https://doi.org/10.1016/j.heliyon.2023.e14482
12. Russo, A., & Cirella, G. T. (2019). Edible urbanism 5.0. Palgrave communications, 5(1), 1-9.
https://doi.org/10.1057/s41599-019-0377-8.
13. U.N. 2015. Sustainable Development Goals Action Platforms. Department of Economic and Social Affairs, Sustainable Development, New York, USA. sdgs.un.org/partnership.
14. Kii, M. (2021). Projecting future populations of urban agglomerations around the world and through the 21st century. Npj Urban Sustainability, 1(1), 10.
https://doi.org/10.1038/s42949-020-00007-5
15. Lee-Smith, D. (2010). Cities feeding people: an update on urban agriculture in equatorial Africa. Environment and urbanization, 22(2), 483-499.
https://doi.org/10.1177/0956247810377383.
16. Nkrumah, B. (2019). Africa's future: demarginalizing urban agriculture in the era of climate change.
https://doi.org/10.5555/20193345475.
17. Joy, T. H., Violet, H. I., & Richard, C. T. (2025). The case for urban agriculture: Opportunities for sustainable development. Urban Forestry & Urban Greening, 128861.
https://doi.org/10.1016/j.ufug.2025.128861.
18. Joshipura, T. (2024). Feeding African cities: Hinterland suitability and urban growth in twentieth-century sub-Saharan Africa. Economic History of Developing Regions, 39(3), 251-278.
https://doi.org/10.1080/20780389.2024.2376549.
19. Miccoli, S., Finucci, F., & Murro, R. (2016). Feeding the Cities Through Urban Agriculture The Community Esteem Value. Agriculture and Agricultural Science Procedia, 8, 128–134.
https://doi.org/10.1016/j.aaspro.2016.02.017
20. Kwanza, Kilimo. 2024. Africa’s Annual Food Imports at $50 Billion Set to Surge to $90-$110 Billion by 2025 Without Urgent Action: Exploring the Gains, Challenges, and Path to Self-Sufficiency.
https://kilimokwanza.org/africas-annual-food-imports-at-50-billion-set-to-surge-to-90-110-billion-by-2025-without-urgent-action-exploring-the-gains-challenges-and-path-to-self-sufficiency/
21. Niemczynowicz, J. (1996). Megacities from a water perspective. Water International, 21(4), 198-205.
https://doi.org/10.1080/02508069608686515
22. El-Ramady, H., Alshaal, T., Elsakhawy, T., Omara, A. E. D., Abdalla, N., & Brevik, E. C. (2018). Soils and humans. In The soils of Egypt (pp. 201-213). Cham: Springer International Publishing.
https://doi.org/10.1007/978-3-319-95516-2_12.
23. Carré, F., Caudeville, J., Bonnard, R., Bert, V., Boucard, P., Ramel, M. (2017). Soil Contamination and Human Health: A Major Challenge for Global Soil Security. In: Field, D.J., Morgan, C.L.S., McBratney, A.B. (eds) Global Soil Security. Progress in Soil Science. Springer, Cham.
https://doi.org/10.1007/978-3-319-43394-325
24. Ushimaru, S., Iwata, R., Amrullah, E. R., Utami, A. W., & Ishida, A. (2024). Which Households Raise Livestock in Urban and Peri-Urban Areas of Eight Developing Asian Countries? Agriculture, 14(3), Article 3.
https://doi.org/10.3390/agriculture14030443
25. Quaye, J., Adams, F., Mensah, A., Ullah, A., Euah, S., & Donkor, E. (2025). Crop‐Livestock Integration in Urban Agriculture: Implication for Urban Food Security in Ghana. Food and Energy Security, 14(3), e70100.
https://doi.org/10.1002/fes3.70100
26. Mihailović, B., Radosavljević, K., & Popović, V. (2023). The role of indoor smart gardens in the development of smart agriculture in urban areas. Економика пољопривреде, 70(2), 453-468.
27. Wooten, H. (2018). Growing communities, growing food: hydroponic gardening for urban audiences.
https://www.cabidigitallibrary.org/doi/epdf/10.5555/20193451619.
28. Dixon, J., Omwega, A. M., Friel, S., Burns, C., Donati, K., & Carlisle, R. (2007). The health equity dimensions of urban food systems. Journal of Urban Health, 84(Suppl 1), 118-129.
https://doi.org/10.1007/s11524-007-9176-4.
29. Song, S., Cheong, J. C., Lee, J. S., Tan, J. K., Chiam, Z., Arora, S., ... & Tan, H. T. (2022). Home gardening in Singapore: A feasibility study on the utilization of the vertical space of retrofitted high-rise public housing apartment buildings to increase urban vegetable self-sufficiency. Urban Forestry & Urban Greening, 78, 127755.
https://doi.org/10.1016/j.ufug.2022.127755.
30. Oh, S., & Lu, C. (2023). Vertical farming-smart urban agriculture for enhancing resilience and sustainability in food security. The Journal of Horticultural Science and Biotechnology, 98(2), 133-140.
https://doi.org/10.1080/14620316.2022.2141666.
31. Boneta, A., Rufí-Salís, M., Ercilla-Montserrat, M., Gabarrell, X., & Rieradevall, J. (2019). Agronomic and environmental assessment of a polyculture rooftop soilless urban home garden in a mediterranean city. Frontiers in Plant Science, 10, 341.
https://doi.org/10.3389/fpls.2019.00341.
32. Armanda, D. T., Guinée, J. B., & Tukker, A. (2019). The second green revolution: Innovative urban agriculture’s contribution to food security and sustainability – A review. Global Food Security, 22, 13–24.
https://doi.org/10.1016/j.gfs.2019.08.002.
33. Diekmann, L. O., Gray, L. C., & Baker, G. A. 2020. Growing ‘good food’: Urban gardens, culturally acceptable produce and food security. Renewable Agriculture and Food Systems, 35(2), 169-181.
https://doi.org/10.1017/S1742170518000388
34. Payen, F. T., Evans, D. L., Falagán, N., Hardman, C. A., Kourmpetli, S., Liu, L., ... & Davies, J. A. (2022). How much food can we grow in urban areas? Food production and crop yields of urban agriculture: a meta‐analysis. Earth's future, 10(8), e2022EF002748.
https://doi.org/10.1029/2022EF002748.
35. Acevedo-De-los-Ríos, A., Dyson, A., Claeys, D., & Cardenas-Mamani, U. (2025). Environmental performance of urban agriculture in the global south: A comprehensive literature review and life cycle analysis approach. Environmental Impact Assessment Review, 115, 108040.
https://doi.org/10.1016/j.eiar.2025.108040
36. de Oliveira Alves, D., de Oliveira, L., & Muehl, D. D. (2024). Commercial urban agriculture for sustainable cities. Cities, 150, 105017.
https://doi.org/10.1016/j.cities.2024.105017
37. Ebenso, B., Otu, A., Giusti, A., Cousin, P., Adetimirin, V., Razafindralambo, H., ... & Mounir, M. (2022). Nature-based one health approaches to urban agriculture can deliver food and nutrition security. Frontiers in Nutrition, 9, 773746.
https://doi.org/10.3389/fnut.2022.773746.
38. Lal, R. (2017). Managing urban soils for food security and adaptation to climate change. In International Congress on Soils of Urban, Industrial, Traffic, Mining and Military Areas(pp. 302-319). Cham: Springer International Publishing.
https://doi.org/10.1007/978-3-319-89602-1_35.
39. Lal, R., Brevik, E. C., Dawson, L., Field, D., Glaser, B., Hartemink, A. E., ... & Sánchez, L. B. R. (2020). Managing soils for recovering from the COVID-19 pandemic. Soil Systems, 4(3), 46.
https://doi.org/10.3390/soilsystems4030046.
40. Abdelmenan, S., Worku, A., Berhane, H. Y., Berhane, Y., & Ekström, E. C. (2025). Affordability of family foods is associated with Nutritional Status of women with pre-school children in Addis Ababa, Ethiopia. Scientific Reports, 15(1), 665.
https://doi.org/10.1038/s41598-024-83064-5.
41. Dima, S. J., Ogunmokun, A. A., & Nantanga, T. (2002). The status of urban and peri-urban agriculture. Report for the FAO Integrated Support to Sustainable Development and Food Security Programme, University of Namibia, 51-76.
42. Opitz, I., Berges, R., Piorr, A., & Krikser, T. (2016). Contributing to food security in urban areas: differences between urban agriculture and peri-urban agriculture in the Global North. Agriculture and Human Values, 33(2), 341-358.
https://doi.org/10.1007/s10460-015-9610-2
43. Amos, C. C., Rahman, A., Karim, F., & Gathenya, J. M. (2018). A scoping review of roof harvested rainwater usage in urban agriculture: Australia and Kenya in focus. Journal of cleaner production, 202, 174-190.
https://doi.org/10.1016/j.jclepro.2018.08.108.
44. Kanosvamhira, T. P. (2024). Sustainable urban agriculture: Unlocking the potential of home gardens in low-income communities. The Professional Geographer, 76(5), 587-596.
https://doi.org/10.1080/00330124.2024.2355179.
45. Pollard, G., Ward, J., & Roetman, P. (2018). Typically diverse: the nature of urban agriculture in South Australia. Sustainability, 10(4), 945.
https://doi.org/10.3390/su10040945
46. Boukharta, O. F., Chico Santamarta, L., Correa Guimaraes, A., & Navas Gracia, L. M. (2025). Assessing Citizens’ Perceptions of Urban Agriculture and Its Contribution to Food Security—Worldwide Analysis and Specific Case Studies in Spain. Urban Science, 9(5), 150.
https://doi.org/10.3390/urbansci9050150.
47. Ribeiro, S. M., Bógus, C. M., & Watanabe, H. A. W. (2015). Agroecological urban agriculture from the perspective of health promotion. Saúde e Sociedade, 24, 730-743.
https://doi.org/10.1590/S0104-12902015000200026.
48. Brown, K. H., & Jameton, A. L. (2000). Public health implications of urban agriculture. Journal of public health policy, 21(1), 20-39.
https://doi.org/10.2307/3343472
49. Pantoja-Calderon, R., Garcia-Cejudo, D., & Roggema, R. (2025). Addressing the Paradox of Food and Health in Mexico: A Landscape Urbanism Approach. Land, 14(3), 506.
https://doi.org/10.3390/land14030506.
50. Rosmiza, M. Z., & Zainal, M. (2021). Exploration of human assets among community garden project participants.
https://doi.org/10.17576/geo-2021-1704-03, 2180-2491
51. Liu, Y., Chanse, V., & Chicca, F. (2025). Enhancing Post-Disaster Food Security Through Urban Agriculture in the Context of Climate Change. Land, 14(4), Article 4.
https://doi.org/10.3390/land14040799
52. Chari, F., & Ngcamu, B. S. (2022). Climate change and its impact on urban agriculture in Sub-Saharan Africa: A literature review. Environmental & Socio-Economic Studies, 10(3), 22–32.
https://doi.org/10.2478/environ-2022-0014
53. Xu, J., Lin, T., Wang, Y., Jiang, W., Li, Q., Lu, T., & Yu, H. (2024). Home food gardening in modern cities: advances, issues, and future perspectives. Frontiers in Sustainable Food Systems, 8, 1391732.
https://doi.org/10.3389/fsufs.2024.1391732.
54. Dimitri, C., Oberholtzer, L., & Pressman, A. (2016). Urban agriculture: connecting producers with consumers. British Food Journal, 118(3), 603-617.
https://doi.org/10.1108/BFJ-06-2015-0200.
55. Taylor, J. R., & Lovell, S. T. (2014). Urban home food gardens in the Global North: Research traditions and future directions. Agriculture and human values, 31(2), 285-305. DOI 10.1007/s10460-013-9475-1.
56. Gerster-Bentaya, M. (2013). Nutrition-sensitive urban agriculture. Food security, 5(5), 723-737.
https://doi.org/10.1007/s12571-013-0295-3.
57. Gunapala, R., Gangahagedara, R., Wanasinghe, W. C. S., Samaraweera, A. U., Gamage, A., Rathnayaka, C., Hameed, Z., Baki, Z. A., Madhujith, T., & Merah, O. (2025). Urban agriculture: A strategic pathway to building resilience and ensuring sustainable food security in cities. Farming System, 3(3), 100150.
https://doi.org/10.1016/j.farsys.2025.100150
58. Tabrez, Z. (2025). Sustainable cities: Enhancing food systems with urban agriculture. Discover Food, 5(1).
https://doi.org/10.1007/s44187-025-00439-x
59. Lal, R. (2022). Sustaining soil for advancing peace: World is one family. Journal of Soil and Water Conservation, 77(3), 43A-47A.
https://doi.org/10.2489/jswc.2022.0411A
60. Warren, E., Hawkesworth, S., & Knai, C. (2015). Investigating the association between urban agriculture and food security, dietary diversity, and nutritional status: A systematic literature review. Food Policy, 53, 54–66.
https://doi.org/10.1016/j.foodpol.2015.03.004
61. Ola, A. (2020). Building a food-resilient city through urban agriculture: The case of Ilorin, Nigeria. Town and Regional Planning, 77, 89-102.
http://dx.doi.org/10.18820/2415-0495/trp77i1.7.
62. Lal, R. (2021). Feeding the world and returning half of the agricultural land back to nature. Journal of Soil and Water Conservation, 76(4), 75A-78A.
https://doi.org/10.2489/jswc.2021.0607A.
63. Ayaz, H., Nawaz, R., Nasim, I., Irshad, M. A., Irfan, A., Khurshid, I., ... & Bourhia, M. (2023). Comprehensive human health risk assessment of heavy metal contamination in urban soils: insights from selected metropolitan zones. Frontiers in Environmental Science, 11, 1260317.
https://doi.org/10.3389/fenvs.2023.1260317.
64. Ali, W., Zhang, H., Mao, K., Shafeeque, M., Aslam, M. W., Yang, X., & Podgorski, J. (2022). Chromium contamination in paddy soil-rice systems and associated human health risks in Pakistan. Science of the Total Environment, 826, 153910.
https://doi.org/10.1016/j.scitotenv.2022.153910.
65. Moghtaderi, T., Mahmoudi, S., Shakeri, A., & Masihabadi, M. H. (2018). Heavy metals contamination and human health risk assessment in soils of an industrial area, Bandar Abbas–South Central Iran. Human and Ecological Risk Assessment: An International Journal, 24(4), 1058-1073.
https://doi.org/10.1080/10807039.2017.1405723.
66. Durdu, B., Gurbuz, F., Koçyiğit, H., & Gurbuz, M. (2023). Urbanization-driven soil degradation; ecological risks and human health implications. Environmental Monitoring and Assessment, 195(8), 1002.
https://doi.org/10.22616/j.landarchart.2021.18.05
67. Perković, S., Paul, C., Vasić, F., & Helming, K. (2022). Human health and soil health risks from heavy metals, micro (nano) plastics, and antibiotic resistant bacteria in agricultural soils. Agronomy, 12(12), 2945.
https://doi.org/10.3390/agronomy12122945.
68. Tong, S., Li, H., Wang, L., Tudi, M., & Yang, L. (2020). Concentration, spatial distribution, contamination degree and human health risk assessment of heavy metals in urban soils across China between 2003 and 2019—a systematic review. International journal of environmental research and public health, 17(9), 3099.
https://doi.org/10.3390/ijerph17093099.
69. Angon, P. B., Islam, M. S., Das, A., Anjum, N., Poudel, A., & Suchi, S. A. (2024). Sources, effects and present perspectives of heavy metals contamination: Soil, plants and human food chain. Heliyon, 10(7). usage in urban agriculture: Australia and Kenya in focus. Journal of cleaner production, 202, 174-190.
https://doi.org/10.1016/j.heliyon.2024.e28357.
70. Chia, R.W., Lee, JY., Jang, J. et al. Soil health and microplastics: a review of the impacts of microplastic contamination on soil properties. J Soils Sediments 22, 2690–2705 (2022).
https://doi.org/10.1007/s11368-022-03254-4
71. Davies, J., Hannah, C., Guido, Z., Zimmer, A., McCann, L., Battersby, J., & Evans, T. (2021). Barriers to urban agriculture in Sub-Saharan Africa. Food Policy, 103, 101999. https://doi.org/10.1016/j.foodpol.2020.101999.
72. Tevera, D. (2022). Secondary cities and urban agriculture in sub-Saharan Africa. In Transforming urban food systems in secondary cities in Africa (pp. 133-147). Cham: Springer International Publishing.
https://doi.org/10.1007/978-3-030-93072-1_7.
73. Hemerijckx, L.-M., De Vos, K., Kaunda, J. O., & Van Rompaey, A. (2025). Future scenarios for urban agriculture and food security in sub-Saharan Africa: Modelling the urban land-food system in an agent-based approach. Computers, Environment and Urban Systems, 118, 102258.
https://doi.org/10.1016/j.compenvurbsys.2025.102258
74. Richter, F. (2013). La agricultura urbana y el cultivo de sí. Los huertos de ocio a la luz de las dinámicas neorrurales. (Urban agriculture and the growing of the self. Leisure gardening in light of new-rural dynamics).
http://hdl.handle.net/10366/123231.
75. Dubbeling, M., & De Zeeuw, H. (2011, April). Urban agriculture and climate change adaptation: ensuring food security through adaptation. In Resilient cities: Cities and adaptation to climate change-proceedings of the global forum 2010 (pp. 441-449). Dordrecht: Springer Netherlands.
https://doi.org/10.1007/978-94-007-0785-6_44.
76. Salomon, M. J., Watts-Williams, S. J., McLaughlin, M. J., & Cavagnaro, T. R. (2022). Spatiotemporal dynamics of soil health in urban agriculture. Science of the Total Environment, 805, 150224.
https://doi.org/10.1016/j.scitotenv.2021.150224.
77. Zivhave, M., & Kornienko, K. (2025, March). Urban Agriculture’s ‘Invisible’Short Food Value Chain: How Small-scale Farming Contributes to Johannesburg Food Security. In Urban Forum (Vol. 36, No. 1, pp. 91-113). Dordrecht: Springer Netherlands.
78. Aggarwal, B., Rajora, N., Raturi, G., Dhar, H., Kadam, S. B., Mundada, P. S., Shivaraj, S. M., Varshney, V., Deshmukh, R., Barvkar, V. T., Salvi, P., & Sonah, H. (2024). Biotechnology and urban agriculture: A partnership for the future sustainability. Plant Science, 338, 111903.
https://doi.org/10.1016/j.plantsci.2023.111903
79. Gumisiriza, M. S., Ndakidemi, P. A., Nampijja, Z., & Mbega, E. R. (2023). Soilless urban gardening as a post covid-19 food security salvage technology: A study on the physiognomic response of lettuce to hydroponics in Uganda. Scientific African, 20, e01643.
https://doi.org/10.1016/j.sciaf.2023.e01643
80. Rao, N., Patil, S., Singh, C., Roy, P., Pryor, C., Poonacha, P., & Genes, M. (2022). Cultivating sustainable and healthy cities: A systematic literature review of the outcomes of urban and peri-urban agriculture. Sustainable Cities and Society, 85, 104063.
https://doi.org/10.1016/j.scs.2022.104063
81. Kirby, C. K., Specht, K., Fox-Kämper, R., Hawes, J. K., Cohen, N., Caputo, S., Ilieva, R. T., Lelièvre, A., Poniży, L., Schoen, V., & Blythe, C. (2021). Differences in motivations and social impacts across urban agriculture types: Case studies in Europe and the US. Landscape and Urban Planning, 212, 104110.
https://doi.org/10.1016/j.landurbplan.2021.104110
82. Dorofieieva, K., & Vugule, K. (2021). Phenomenon of Urban Agriculture and Its Role in Shaping Sustainable Cities. Landscape Architecture and Art, 18, 49–58. https://doi.org/10.22616/j.landarchart.2021.18.05
83. Panico, S. C., Santorufo, L., Memoli, V., Esposito, F., Santini, G., Di Natale, G., ... & Maisto, G. (2023). Evaluation of soil heavy metal contamination and potential human health risk inside forests, wildfire forests and urban areas. Environments, 10(8), 146.
https://doi.org/10.3390/environments10080146
84. Meena, V., Dotaniya, M. L., Saha, J. K., Das, H., & Patra, A. K. (2019). Impact of lead contamination on agroecosystem and human health. In Lead in Plants and the Environment (pp. 67-82). Cham: Springer International Publishing.
https://doi.org/10.1007/978-3-030-21638-2_4.
85. Hume, I. V., Summers, D. M., & Cavagnaro, T. R. (2022). Lawn with a side salad: Rainwater harvesting for self-sufficiency through urban agriculture. Sustainable Cities and Society, 87, 104249.
https://doi.org/10.1016/j.scs.2022.104249
86. Ramon, F., & Lull, C. (2019). Legal measures to prevent and manage soil contamination and to increase food safety for consumer health: The case of Spain. Environmental Pollution, 250, 883-891.
https://doi.org/10.1016/j.envpol.2019.04.074.
87. U.N.2015.Transforming our world: the 2030 Agenda for Sustainable Devlopment : Department of Economic and Social Affairs,New York: sdg.un.org/2030agenda