The Nemesis Effect in Healthcare: Complexity, Artificial Intelligence and Patient Safety
Main Article Content
Abstract
The Nemesis Effect occurs when a clinical intervention increases the likelihood of the adverse outcome it was intended to avoid, or has other perverse effects that vitiate its benefits. The effect arises from the natural tendency of a complex adaptive system (such as healthcare) toward increased ‘entropy’— that is, toward greater disorder — mediated through both the complex interconnectedness of its components and a relative inability of well-meaning human agents to see ‘the bigger picture’ when implementing powerful policies and technologies. To illustrate the concept, several examples are cited from modern medical practice: the rise of multidrug-resistant organisms, the unintended effects of the European Working Time Directive, and the deskilling impact of certain novel technologies in surgery and anaesthesia. The potential nemesis effects of artificial intelligence (AI) on clinical practice are then discussed, together with possible seeds of remedy through a human factors/ergonomics approach to healthcare governance and clinical training. Good clinical governance can be seen as a way of maintaining a state of ‘negative entropy’ needed to keep a ‘living’ system safe, stable and functional. This requires the ongoing expenditure of energy and effort, as well as the adoption of a broader sociotechnical perspective.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2 Schrodinger E. (1944) What is Life? The Physical Aspect of the Living Cell. Available at https://archive.org/details/WhatIsLife-EdwardSchrodinger/page/n1/mode/2up accessed 20 July 2025
3 Barber HF. (1992) Developing Strategic Leadership: The US Army War College Experience. J Management Dev 11(6):4-12 doi:10.1108/02621719210018208
4 Pandit M. (2021) Critical factors for successful management of VUCA times. BMJ Leader 5:121-123
5 Cernega A, Nicolescu DN, Imre MM, Totan AR, Arsene AL, Serban RS, Perpelea A-C, Nedea M-I, Pituru S-M. (2024) Volatility, Uncertainty, Complexity, and Ambiguity (VUCA) in Healthcare. Healthcare (Basel) 12(7):773. doi:10.3390/healthcare12070773
6 Kurtz CF, Snowden DJ. (2003) The new dynamics of strategy: Sense-making in a complex and complicated world. IBM Systems J 42(3):462-83.
7 Snowden D, Rancati A. (2021) Managing Complexity (and Chaos) in Times of Crisis: A Field Guide for Decision Makers Inspired by the Cynefin Framework. Publications Office of the European Union Pubs. Available at https://publications.jrc.ec.europa.eu/repository/handle/JRC123629 (accessed 1 Dec 2025)
8 Braithwaite J, Clay-Williams R et al. (2013) Health Care as a Complex Adaptive System. In: Resilient Health Care (Ashgate Pubs., Farnham UK). 57-73
9 Illich, I (1976). Limits to Medicine - Medical Nemesis: The Expropriation of Health. Marion Boyars Pub. London. passim
10 Fleming A (1945). Penicillin (Nobel Lecture, December 11, 1945). Available at https://www.nobelprize.org/uploads/2018/06/fleming-lecture.pdf accessed 20 Jul 2025
11 Davies J, Davies D. (2010). Origins and Evolution of Antibiotic Resistance. Microbiol Mol Biol Rev 74(3):417-33. doi: 10.1128/MMBR.00016-10
12 World Health Organisation (2023) Antimicrobial Resistance FactSheet. Available at https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance accessed 20 Jul 2025
13 Naghavi, M et al. (2024) Global burden of bacterial antimicrobial resistance 1990–2021: a systematic analysis with forecasts to 2050. Lancet 404(10459): 1199-1226
14 Frosh A. (1999). Prions and the ENT surgeon. J Laryngol Otol 113:1064-7.
15 Frosh A, Joyce R, Johnson A. (2001) Iatrogenic vCJD from surgical instruments. BMJ 322(7302):1558–1559. doi: 10.1136/bmj.322.7302.1558
16 Re-introduction of reusable instruments for tonsil surgery. Department of Health (UK) Press Release December 14, 2001. Available through UK National Archives website at http://webarchive.nationalarchives.gov.uk/+/www.dh.gov.uk/en/Publicationsandstatistics/Pressreleases/DH_4011629 (accessed 13 Nov 2025)
17 European Commission. (2003) Directive 2003/88/EC of the European Parliament and of the Council of 4 November 2003 concerning certain aspects of the organisation of working time. Official Journal L 299, 18/11/2003. 9–19. Available at https://eur-lex.europa.eu/eli/dir/2003/88/oj/eng accessed 13 Jul 2025
18 Royal College of Surgeons of England. (2014) Taskforce report on the impact of the European Working Time Directive. Available at https://www.rcseng.ac.uk/-/media/Files/RCS/Standards-and-research/Standards-and-policy/Service-standards/Workforce/wtdtaskforcereport2014.pdf (accessed 01 August 2025)
19 Anantharachagan A, Ohja K. (2011) Working time directive and its impact on training. Obs Gyn Rep Med 21(3):91-93 doi: 10.1016/j.ogrm.2011.01.005
20 Axelrod L, Shah DJ, Jena AB (2013). The European Working Time Directive: An Uncontrolled Experiment in Medical Care and Education. JAMA 309(5): 447-8. doi:10.1001/jama.2012.148065
21 Alkatout I, Mechler U et al. (2021) The Development of Laparoscopy: an Overview. Front Surg 8:79942 doi: 10.3389/fsurg.2021.799442
22 Patil M Jr, Gharde P, Reddy K, Nayak K. (2024) Comparative Analysis of Laparoscopic Versus Open Procedures in Specific General Surgical Interventions. Cureus 16(2):e54433. doi: 10.7759/cureus.54433
23 Burgdorf SK, Rosenberg J (2012) Short Hospital Stay after Laparoscopic Colorectal Surgery without Fast Track. Minim Invasive Surg 2012:260273. doi: 10.1155/2012/260273
24 Schildberg C, Weber U, König V, Linnartz M, Heisler S, Hafkesbrink J, Fricke M, Mantke R. (2025) Laparoscopic appendectomy as the gold standard: What role remains for open surgery, conversion, and disease severity? An analysis of 32,000 cases with appendicitis in Germany. World J Emerg Surg 20(1):53
25 Patil M, Gharde P, Reddy K, Nayak K. (2024) Comparative Analysis of Laparoscopic Versus Open Procedures in Specific General Surgical Interventions. Cureus 16(2):e54433. doi: 10.7759/cureus.54433
26 Cheung FY, Bretherton K, Wong N. (2022) SP7.7 Open Appendicectomy Confidence and Experience Study (OACES): a multicentre survey of UK non-consultant grade surgeons BJS 105(9):znac247.080. doi: 10.1093/bjs/ znac247.080
27 Ring L, Landau R, Delgado C. (2021). The Current Role of General Anaesthesia for Cesarean Delivery. Curr Anaesthesiol Rep 11(1):18-27. doi: 10.1007/s40140-021-00437-6
28 Johnson RV Lyons GR et al. (2000) Training in obstetric general anaesthesia: a vanishing art? Anaesthesia 55(2): 179-83 doi: 10.1046/j.1365-2044.2000.055002179.x
29 Searle RD, Lyons G. (2008) Vanishing experience in training for obstetric general anaesthesia: an observational study. Int J Obstet Anaesthesiol 17(3):233-7. doi: 10.1016/j.ijoa.2008.01.007
30 Palanisamy A, Mitani AA, Tsen LC. (2011) General anaesthesia for cesarean delivery at a tertiary care hospital from 2000 to 2005: a retrospective analysis and 10-year update. Int J Obstet Anaesthesiol 20(1): 10-16. doi:10.1016/j.ijoa.2010.07.002
31 Brain AI. (1983) The Laryngeal Mask Airway – a new concept in airway management. BJA 55(8):801-5 doi: 10.1093/bja/55.8.801
32 Brimacombe JR, Berry AM, Brain AIJ. (1995). The laryngeal mask airway. Anaesthesiol Clin N Am 13(2):411-37. doi: 10.1016/S0889-8537(21)00528-9
33 Royal College of Anaesthetists. (2009) Major complications of airway management in the United Kingdom - 4th National Audit Project of The Royal College of Anaesthetists and The Difficult Airway Society. Available at
34 https://www.rcoa.ac.uk/sites/default/files/documents/2023-02/NAP4%20Full%20Report.pdf accessed 01 Aug 2025.
35 Aydin ZIA, Avci II, Avci IE. (2025). Factors associated with placement failure of second-
36 generation laryngeal mask airway: a retrospective clinical study. Acta Medica Nicomedia 8(1):1-10. doi: 10.53446/actamednicomedia.1486989
37 Alexander R, Hodgson P, Lomax D, Mullen C. (1993) A comparison of the laryngeal mask airway and Guedel airway, bag and facemask for manual ventilation following formal training. Anaesthesia 48(3):231-4. doi: 10.1011/j.1365-2044.1993.tb06909.x
38 Lasik J, Klosiewicz T, Puslecki M. (2025) Quality of bag-valve-mask ventilation in adults: a comparison of paramedic and nurse performance. Disaster Emerg Med J 10(2):85-93. doi: 10.5603/demj.104569
39 Perlas A, Brull R, Chan VW. (2008) Ultrasound guidance improves the success of peripheral nerve blocks: a meta-analysis. Reg Anaesth Pain Med 33(3):213–218.
40 Barrington MJ, Kluger R. (2013) Ultrasound guidance reduces the risk of local anaesthetic systemic toxicity following peripheral nerve blockade. Reg Anaesth Pain Med 38(4):289–297
41 Abrahams MS, Aziz MF, Fu RF, Horn JL. (2009) Ultrasound guidance compared with nerve stimulation for peripheral nerve block: a systematic review and meta-analysis of randomized controlled trials. Br J Anaesth 102(3):408–417.
42 Gadsden JC. (2021) The role of peripheral nerve stimulation in the era of ultrasound-guided regional anaesthesia. Anaesthesia 76(1):65-73 doi:10.1111/anae.15257
43 Ghosh SM, Madjdpour C, Chin KJ. (2016). Ultrasound-guided lumbar central neuraxial block. BJA Ed 16(7):2013-220 DOI: 10.1093/bjaed/mkv048
44 Karmakar MK, Chin KJ (2023) Spinal Sonography and Applications of Ultrasound for Central Neuraxial Blocks. Available through the NYSORA website https://www.nysora.com/techniques/neuraxial-and-perineuraxial-techniques/spinal-sonography-and-applications-of-ultrasound-for-central-neuraxial-blocks/ Accessed 03 Aug 2025
45 Bainbridge L. (1983) Ironies of Automation. Automatica 19(6):775-779 doi:10.1016/0005-1098(83)90046-8
46 McKendrick M, Yang S, McLeod (2021) The use of artificial intelligence and robotics in regional anaesthesia. Anaesthesia 76(1):171-81 doi: 10.1111/anae.15274
47 Lonsdale H, Burns ML, Epstein RH, Hofer IS, Tighe PJ, Gálvez Delgado JA, Kor DJ, MacKay EJ, Rashidi P, Wanderer JP, McCormick PJ. (2025) Strengthening Discovery and Application of Artificial Intelligence in Anaesthesiology: A Report from the Anaesthesia Research Council. Anesth Analg 140(4):920-930
48 Bellini V, Rafano Carnà E, Russo M, Di Vincenzo F, Berghenti M, Baciarello M, Bignami E. Artificial intelligence and anaesthesia: a narrative review. Ann Transl Med. 2022 May;10(9):528.
49 Dundaru-Bandi D, Antel R, Ingelmo P. Advances in pediatric perioperative care using artificial intelligence. Curr Opin Anesthesiol. 2024 Jun 1;37(3):251-258.
50 Lonsdale H, Burns ML, Epstein RH, Hofer IS, Tighe PJ, Gálvez Delgado JA, Kor DJ, MacKay EJ, Rashidi P, Wanderer JP, McCormick PJ. Strengthening Discovery and Application of Artificial Intelligence in Anaesthesiology: A Report from the Anaesthesia Research Council. Anesth Analg. 2025 Apr 1;140(4):920-930.
51 Xue B, Li D, Lu C, et al. (2021) Use of Machine Learning to Develop and Evaluate Models Using Preoperative and Intraoperative Data to Identify Risks of Postoperative Complications. JAMA Netw Open 4:e212240.
52 Kim JH, Kim H, Jang JS, et al. Development and validation of a difficult laryngoscopy prediction model using machine learning of neck circumference and thyromental height. BMC Anesthesiol 2021;21:125.
53 Michard F, Futier E. (2023) Predicting intraoperative hypotension: from hope to hype and back to reality. BJA 131(2):199-201. doi: 10.1016/j.bja.2023.02.029
54 Cao Y, Wang Y, Liu H, Wu L. (2025) Artificial intelligence revolutionizing anaesthesia management: advances and prospects in intelligent anaesthesia technology. Front Med (Lausanne) 12:1571725.
55 West N, van Heusden K, Matthias G, Brodie S, Rollinson A, Petersen C, Dumont G, Ansermino, JM, Merchant R. (2018) Design and Evaluation of a Closed-Loop Anesthesia System With Robust Control and Safety System. Anesth Analg 127(4):883-894. doi: 10.1213/ANE.0000000000002663
56 Harris J, Matthews J. (2024) Artificial Intelligence: Predicting Perioperative Problems. Br J Hosp Med 85(8):1-4.
57 Bellini V, Valente M, Gaddi AV, Pelosi P, Bignami E. Artificial intelligence and telemedicine in anaesthesia: potential and problems. Minerva Anestesiol. 2022 Sep;88(9):729-734.
58 Savage M, Spence A, Turbitt L. (2024) The educational impact of technology-enhanced learning in regional anaesthesia: a scoping review. BJA 133(2) 400-415. doi: 10.1016/j.bja.2024.04.045
59 Minehart RD, Stefanski SE. (2025) Artificial Intelligence Supporting Anaesthesiology Clinical Decision-Making. Anesth Analg. 141(3)536-539.
60 Corpman D, Auyong DB, Walters D, Gray A. (2025) Using AI chatbots as clinical decision support for regional anaesthesia: is the new era of "e-Consults" ready for primetime? Reg Anesth Pain Med rapm-2025-106850.
61 Hoshima H, Miyazaki T, Mitsui Y, Omachi S, Yamauchi M, Mizuta K. (2024) Machine learning-based identification of the risk factors for postoperative nausea and vomiting in adults. PLoS One 19(8):e0308755. doi: 10.1371/journal.pone.0308755.
62 Hashimoto DA, Witkowski E, Gao L, Meireles O, Rosman G. (2020) Artificial Intelligence in Anaesthesiology: Current Techniques, Clinical Applications, and Limitations. Anaesthesiology 132(2):379-394.
63 Rahman MA, Victoros E, Ernest J, Davis R, Shanjana Y, Islam MR. (2024) Impact of Artificial Intelligence (AI) Technology in Healthcare Sector: A Critical Evaluation of Both Sides of the Coin. Clin Path 17:1-5 doi : 10.1177/2632010X2412268
64 Naik N, Hameed BMZ, Shetty DK, Swain D, Shah M, Paul R, Aggarwal K, Ibrahim S, Patil V, Smirti K, Shetty S, Rai BP, Chlosta P, Somani BK. (2022) Legal and Ethical Consideration in Artificial Intelligence in Healthcare: Who Takes Responsibility? Front Surg 9:862322. doi: 10.3389/fsurg.2022.862322
65 McKee M, Wouters OJ. (2022) The Challenges of Regulating Artificial Intelligence in Healthcare. Int J Health Policy Manag 12:7261. doi: 10.34172/ijhpm.2022.7261
66 Shimada K, Inokuchi R, Ohigashi T, Iwagami M, Tanaka M, Gosho M, Tamiya N. (2024) Artificial intelligence-assisted interventions for perioperative anaesthetic management: a systematic review and meta-analysis. BMC Anesthesiol 24(1):306.
67 Duran HT, Kingeter M, Reale C, Weinger MB, Salwei ME. Decision-making in anaesthesiology: Will artificial intelligence make intraoperative care safer? Curr Opin Anaesthesiol. 36(6):691-697.
68 Ericsson KA. (2008) Deliberate practice and acquisition of expert performance: a general overview. Acad Emerg Med 15(11):988-94. doi: 10.1111/j.1553-2712.2008.00227.x.
69 Natali C, Marconi L, Duran LDD, Cabitza F. (2025) AI-induced Deskilling in Medicine: A Mixed-Method Review and Research Agenda for Healthcare and Beyond. Artif Intel Rev 58:356. doi: 10.1007/s10462-025-11352-1
70 Gerlich M. (2025) AI Tools in Society: Impacts on Cognitive Offloading and the Future of Critical Thinking. Societies 15, 6. doi: 10.3390/soc15010006
71 Kurzweil R. (2006). The singularity is near : when humans transcend biology. New York:Penguin.
72 Klein G (2019). The Second Singularity: Human expertise and the rise of AI. Psychology Today Available at https://www.psychologytoday.com/au/blog/seeing-what-others-dont/201912/the-second-singularity (accessed 13 Nov 2025)
73 Hough J, Culley N, Erganian C, Alahdab F. (2025) Potential risks of GenAI on medical education. BMJ Evidence Based Med 30(6):406-408 doi:10.1136/bmjebm-2025-114339
74 Peltzman S. The Effects of Automobile Safety Regulation. J Pol Econ 1975; 83: 677–725.
75 Rudin-Brown CJ. (2013) Behavioural Adaptation and Road Safety: Theory, Evidence and Action. Boca Raton, Florida: Taylor & Francis Group, LLC
76 Prasad V, Jena AB. (2014) The Peltzman effect and compensatory markers in medicine. Healthcare (Amst) 2(3): 170-2
77 Amalberti R, Vincent C et al. Violations and migrations in healthcare: a framework for understanding and management. Qual Saf Health Care 2006 Dec; 15(Suppl 1): i66–i71.
78 Hollnagel E, Woods DD. (1983) Cognitive Systems Engineering: New Wine in New Bottles. Int J Man-Machine Studies 18(6):583-600. doi:10.1016/S0020-7373(83)80034-0 Available at https://erikhollnagel.com/onewebmedia/CSE_NWINB.pdf (accessed 07Nov 2025).
79 Ham D-H. (2021) Safety-II and Resilience Engineering in a Nutshell: An Introductory Guide to Their Concepts and Methods. Safety Health at Work 12(1):10-19 doi: 10.1016/j.shaw.2020.11.004
80 Effken JD (2002). Different lenses, improved outcomes: a new approach to the analysis and design of healthcare information systems. Int J Healthcare Informatics 6(1): 59-74. doi: 10.1016/S1386-5056(02)00003-5
81 McChrystal S, Collins T, Silverman D, Fussel C. (2015) Team of Teams: New Rules of Engagement for a Complex World. Penguin pubs. passim
82 Zarazur BL, Stahl CC, Greenberg JA, Savage SA, Minter RM. (2020) Blueprint for Restructuring a Department of Surgery in Concert With the Health Care System During a Pandemic: The University of Wisconsin Experience. JAMA Surgery 155(7):628-635 doi:10.1001/jamasurg.2020.1386
83 Carayon P, Schoofs Hundt A, Karsh B-T, Gurses AP, Alvarado CJ, Smith M, Flatley Brennan P. (2006) Work system design for patient safety: the SEIPS model. Qual Saf Health Care 15(Suppl I):i50–i58. doi: 10.1136/qshc.2005.015842
84 Carayon P, Wooldridge A, Hoonakker P, Schoofs Hundt A, Kelly MM. (2020) SEIPS 3.0: Human-Centred Design of the Patient Journey for Patient Safety. Appl Ergon 84: 103033. doi:10.1016/j.apergo.2019.103033.
85 Sujan M, Pool R, Salmon M. (2022) Eight human factors and ergonomics principles for healthcare artificial intelligence. BMJ Health Care Inform 29(1):e100516. doi: 10.1136/bmjhci-2021-100516
86 Ward M, Sujan M, Pool R, Preston K, Huang H, Carrington A, Chozos N. (2025) Integrating Human-Centred AI into Clinical Practice. Available at https://ergonomics.org.uk/resource/integrating-human-centred-ai-in-clinical-practice.html (accessed 13 Nov 2025)
87 Abdulnour RE, Gin B, Boscardin CK (2025) Educational Strategies for Clinical Supervision of Artificial Intelligence Use. NEJM 393(8):786-97 doi: 10.1056/NEJ Mra2503232