Multimodal assessment of neuroplasticity in the neurorehabilitation process using virtual reality technology: a case study

Main Article Content

Alejandro R. Yanadel Daniela Pedrozo Fernando Tettamanti Juan Iturrieta Emanuel Tello Alicia Kyomi Shiratori Natalia Lopez Juan Pablo Graffigna Elisa Perez

Abstract

Aim: To evaluate neuroplastic changes during a neurorehabilitation protocol mediated by a serious video game in virtual reality using a multimodal assessment.


Methods: Case study with 18 serious video game sessions. The following were recorded: (i) clinical evolution using the Fugl"Meyer Assessment, (ii) in-game performance, (iii) task functional magnetic resonance imaging with motor paradigms (unilateral and bilateral), and (iv) resting state functional magnetic resonance imaging.


Results: The total Fugl"Meyer Assessment increased from 52 (T0) to 61 points (T2), with greater gains in "upper limb" and "coordination/speed." Performance in the serious video game showed progression in line with clinically planned levels. In task functional magnetic resonance imaging, a significant difference was observed in the bilateral paradigm (Wilcoxon, p=0.0016), consistent with functional reorganisation. In resting state functional magnetic resonance imaging, there was evidence of increased interhemispheric connectivity between Precentral Gyrus, Postcentral Gyrus and Supplementary Motor Cortex and a more organised pattern of the somatomotor network compared to T0; connectivity approximated the normotypical reference pattern.


Conclusion: serious video game -mediated intervention is associated with clinical improvements and markers of neuroplasticity measured by functional magnetic resonance imaging; the proposed multimodal strategy is viable for quantifying functional reorganisation during rehabilitation and warrants further study in larger cohorts.

Keywords: Serious Game, fMRI, Neurorehabilitation, Neuroplasticity, Virtual Reality

Article Details

How to Cite
YANADEL, Alejandro R. et al. Multimodal assessment of neuroplasticity in the neurorehabilitation process using virtual reality technology: a case study. Medical Research Archives, [S.l.], v. 13, n. 12, dec. 2025. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/7130>. Date accessed: 02 jan. 2026. doi: https://doi.org/10.18103/mra.v13i12.7130.
Section
Case Reports

References

1. Ding C, Wu Y, Chen X, et al. Global, regional, and national burden and attributable risk factors of neurological disorders: The Global Burden of Disease study 1990–2019. Front Public Health. 2022;10:952161. doi:10.3389/FPUBH.2022.952161/BIBTEX

2. Winkler AS, Gupta S, Patel V, et al. Global brain health—the time to act is now. Lancet Glob Health. 2024;12(5):e735-e736. doi:10.1016/S2214-109X(23)00602-2

3. Owolabi MO, Leonardi M, Bassetti C, et al. Global synergistic actions to improve brain health for human development. Nature Reviews Neurology 2023 19:6. 2023;19(6):371-383. doi:10.1038/s4158 2-023-00808-z

4. Kandel A. Addressing Neurological Inequities in Developing Countries: Challenges and Strategic Solutions. Sarvodaya International Journal of Medicine. 2025;1(1):1-11. doi:10.4103/SIJM.SIJM_2_24

5. van der Kooij K, van Dijsseldonk R, van Veen M, Steenbrink F, de Weerd C, Overvliet KE. Gamification as a sustainable source of enjoyment during balance and gait exercises. Front Psychol. 2019;10(MAR): 384346. doi:10.3389/FPSYG.2019.00294/BIBTEX

6. Menekseoglu AK, Capan N, Arman S, Aydin AR. Effect of a Virtual Reality-Mediated Gamified Rehabilitation Program on Upper Limb Functions in Children with Hemiplegic Cerebral Palsy: A Prospective, Randomized Controlled Study. Am J Phys Med Rehabil. 2023;102(3):198-205. doi:10.10 97/PHM.0000000000002060

7. Wang TN, Chen YL, Shieh JY, Chen HL. Commercial Exergaming in Home-Based Pediatric Constraint-Induced Therapy: A Randomized Trial. OTJR (Thorofare N J). 2021;41(2):90-100. doi:10.1 177/1539449220984110;SUBPAGE:STRING:ABSTRACT;JOURNAL:JOURNAL:OTJB;WEBSITE:WEBSITE:SAGE;ISSUE:ISSUE:DOI

8. Choi JY, Yi SH, Shim D, Yoo B, Park ES, Rha DW. Home-based virtual reality-enhanced upper limb training system in children with brain injury: a randomized controlled trial. Front Pediatr. 2023;11 :1131573. doi:10.3389/FPED.2023.1131573/BIBTEX

9. Pimentel-Ponce M, Romero-Galisteo RP, Palomo-Carrión R, et al. Gamification and neurological motor rehabilitation in children and adolescents: a systematic review. Neurología (English Edition). 2024;39(1):63-83. doi:10.1016/ J.NRLENG.2023.12.006

10. Saleh N, Salaheldin AM, Badawi M, El-Bialy A. Rehabilitative game-based system for enhancing physical and cognitive abilities of neurological disorders. Cognitive Neurodynamics 2025 19:1. 2025;19(1):1-17. doi:10.1007/S11571-025-10229-X

11. Vezér M, Gresits O, Engh MA, et al. Effectiveness of Video-Game-Based Therapy to Improve Hand Function in Children with Cerebral Palsy: A Systematic Review and Meta-Analysis. J Clin Med. 2024;13(24):7524. doi:10.3390/JCM13247524/S1

12. Munoz-Novoa M, Kristoffersen MB, Sunnerhagen KS, Naber A, Ortiz-Catalan M, Alt Murphy M. Myoelectric pattern recognition with virtual reality and serious gaming improves upper limb function in chronic stroke: a single case experimental design study. Journal of NeuroEngineering and Rehabilitation 2025 22:1. 2025;22(1):1-12. doi:10.1186/S12984-025-01541-Y

13. Yanadel AR, Pérez E, Tettamanti F, Tello EB, López NM. Serious Game Development for the Rehabilitation of Skill Movement in the Upper Limb. IFMBE Proc. 2024;105:262-269. doi:10.1007 /978-3-031-51723-5_33

14. Katz DI, Dwyer B. Clinical Neurorehabilitation: Using Principles of Neurological Diagnosis, Prognosis, and Neuroplasticity in Assessment and Treatment Planning. Semin Neurol. 2021;41(02):111-123. doi:10.1055/S-0041-1725132

15. Laura DG, Silvia T, Nikolaos P, Patrizia P. The Role of fMRI in the Assessment of Neuroplasticity in MS: A Systematic Review. Neural Plast. 2018; 2018(1):3419871. doi:10.1155/2018/3419871

16. Pacheco-Torres J, Moreno A, Fernández B, et al. Functional MRI of Synaptic Plasticity. Handb Behav Neurosci. 2018;28:441-456. doi:10.1016/B9 78-0-12-812028-6.00024-0

17. Foster C, Steventon JJ, Helme D, Tomassini V, Wise RG. Cerebral Metabolic Changes During Visuomotor Adaptation Assessed Using Quantitative fMRI. Front Physiol. 2020;11:497674. doi:10.3389/ FPHYS.2020.00428/BIBTEX

18. Pedrozo D, Graffigna JP, Perez E, et al. FMRI Paradigm to Neurorehabilitation: Preliminary Experimentation. IFMBE Proc. 2024;114:509-520. doi:10.1007/978-3-031-61973-1_48

19. Pérez E, López N, Graffigna JP, et al. Protocolo Para La Evaluación de Neuroplasticidad Aplicado a Tecnologías de Rehabilitación. . Vol 13. Congreso Argentino de educación de ingeniería; 2024.

20. Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM. FSL. Neuroimage. 2012;6 2(2):782-790. doi:10.1016/J.NEUROIMAGE.2011.09.015

21. FreeSurferWiki - Free Surfer Wiki. Accessed November 4, 2025. https://surfer.nmr.mgh.harvard.edu/fswiki

22. Sederevičius D, Vidal-Piñeiro D, Sørensen Ø, et al. Reliability and sensitivity of two whole-brain segmentation approaches included in FreeSurfer – ASEG and SAMSEG. Neuroimage. 2021;237:1181 13. doi:10.1016/J.NEUROIMAGE.2021.118113

23. Anderson T, Lorenser D, Frisken G, Frisken S, Segref A. Anterior and posterior imaging with hyperparallel OCT. Biomedical Optics Express, Vol 14, Issue 6, pp 2678-2688. 2023;14(6):2678-2688. doi:10.1364/BOE.488810

24. About 3D Slicer — 3D Slicer documentation. Accessed November 4, 2025. https://slicer.readthedocs.io/en/latest/user_guide/about.html

25. Zhang Y, Feng H, Zhao Y, Zhang S. Exploring the Application of the Artificial-Intelligence-Integrated Platform 3D Slicer in Medical Imaging Education. Diagnostics 2024, Vol 14, Page 146. 2024;14(2):146. doi:10.3390/DIAGNOSTICS14020146

26. Zhang X, Zhang K, Pan Q, Chang J. Three-dimensional reconstruction of medical images based on 3D slicer. Journal of Complexity in Health Sciences. 2019;2(1):1-12. doi:10.21595/CHS.2019.20724

27. Nieto-Castanon A, Whitfield-Gabrieli S. CONN functional connectivity toolbox: RRID SCR_009550, release 22. CONN functional connectivity toolbox: RRID SCR_009550, release 22. Published online 2022. doi:10.56441/HILBERTPRESS.2246.5840

28. Esteban O, Markiewicz CJ, Blair RW, et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nature Methods 2018 16:1. 2018; 16(1):111-116. doi:10.1038/s41592-018-0235-4

29. Bhattacharjee S, Kashyap R, Abualait T, Annabel Chen SH, Yoo WK, Bashir S. The Role of Primary Motor Cortex: More Than Movement Execution. J Mot Behav. 2021;53(2):258-274. doi: 10.1080/00222895.2020.1738992

30. Driscoll ME, Bollu PC, Tadi P. Neuroanatomy, Nucleus Caudate. StatPearls. Published online July 24, 2023. Accessed November 4, 2025. https://www.ncbi.nlm.nih.gov/books/NBK557407/

31. Javed N, Cascella M. Neuroanatomy, Globus Pallidus. StatPearls. Published online February 20, 2023. Accessed November 4, 2025. https://www.ncbi.nlm.nih.gov/books/NBK557755/

32. Functional differentiation of the premotor cortex: Behavioural and brain imaging studies in humans - the University of Groningen research portal. Accessed November 4, 2025. https://research.rug.nl/en/publications/functional-differentiation-of-the-premotor-cortex-behavioural-and/

33. Proal E, Alvarez-Segura M, de la Iglesia-Vayá M, Martí-Bonmatí L, Castellanos FX, Spanish Resting State Network. Actividad funcional cerebral en estado de reposo: REDES EN CONEXIÓN. Rev Neurol. 2011;52(0 1):S3. Accessed November 4, 2025. https://pmc.ncbi.nlm.nih.gov/articles/PMC4418791/

34. fMRI: resting state and arithmetic task - OpenNeuro. Accessed November 4, 2025. https://openneuro.org/datasets/ds002422/versions/1.0.0

35. Welcome to Python.org. Accessed November 4, 2025. https://www.python.org/

36. SciPy. Accessed November 4, 2025. https://scipy.org/