Multimodal assessment of neuroplasticity in the neurorehabilitation process using virtual reality technology: a case study
Main Article Content
Abstract
Aim: To evaluate neuroplastic changes during a neurorehabilitation protocol mediated by a serious video game in virtual reality using a multimodal assessment.
Methods: Case study with 18 serious video game sessions. The following were recorded: (i) clinical evolution using the Fugl"Meyer Assessment, (ii) in-game performance, (iii) task functional magnetic resonance imaging with motor paradigms (unilateral and bilateral), and (iv) resting state functional magnetic resonance imaging.
Results: The total Fugl"Meyer Assessment increased from 52 (T0) to 61 points (T2), with greater gains in "upper limb" and "coordination/speed." Performance in the serious video game showed progression in line with clinically planned levels. In task functional magnetic resonance imaging, a significant difference was observed in the bilateral paradigm (Wilcoxon, p=0.0016), consistent with functional reorganisation. In resting state functional magnetic resonance imaging, there was evidence of increased interhemispheric connectivity between Precentral Gyrus, Postcentral Gyrus and Supplementary Motor Cortex and a more organised pattern of the somatomotor network compared to T0; connectivity approximated the normotypical reference pattern.
Conclusion: serious video game -mediated intervention is associated with clinical improvements and markers of neuroplasticity measured by functional magnetic resonance imaging; the proposed multimodal strategy is viable for quantifying functional reorganisation during rehabilitation and warrants further study in larger cohorts.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Winkler AS, Gupta S, Patel V, et al. Global brain health—the time to act is now. Lancet Glob Health. 2024;12(5):e735-e736. doi:10.1016/S2214-109X(23)00602-2
3. Owolabi MO, Leonardi M, Bassetti C, et al. Global synergistic actions to improve brain health for human development. Nature Reviews Neurology 2023 19:6. 2023;19(6):371-383. doi:10.1038/s4158 2-023-00808-z
4. Kandel A. Addressing Neurological Inequities in Developing Countries: Challenges and Strategic Solutions. Sarvodaya International Journal of Medicine. 2025;1(1):1-11. doi:10.4103/SIJM.SIJM_2_24
5. van der Kooij K, van Dijsseldonk R, van Veen M, Steenbrink F, de Weerd C, Overvliet KE. Gamification as a sustainable source of enjoyment during balance and gait exercises. Front Psychol. 2019;10(MAR): 384346. doi:10.3389/FPSYG.2019.00294/BIBTEX
6. Menekseoglu AK, Capan N, Arman S, Aydin AR. Effect of a Virtual Reality-Mediated Gamified Rehabilitation Program on Upper Limb Functions in Children with Hemiplegic Cerebral Palsy: A Prospective, Randomized Controlled Study. Am J Phys Med Rehabil. 2023;102(3):198-205. doi:10.10 97/PHM.0000000000002060
7. Wang TN, Chen YL, Shieh JY, Chen HL. Commercial Exergaming in Home-Based Pediatric Constraint-Induced Therapy: A Randomized Trial. OTJR (Thorofare N J). 2021;41(2):90-100. doi:10.1 177/1539449220984110;SUBPAGE:STRING:ABSTRACT;JOURNAL:JOURNAL:OTJB;WEBSITE:WEBSITE:SAGE;ISSUE:ISSUE:DOI
8. Choi JY, Yi SH, Shim D, Yoo B, Park ES, Rha DW. Home-based virtual reality-enhanced upper limb training system in children with brain injury: a randomized controlled trial. Front Pediatr. 2023;11 :1131573. doi:10.3389/FPED.2023.1131573/BIBTEX
9. Pimentel-Ponce M, Romero-Galisteo RP, Palomo-Carrión R, et al. Gamification and neurological motor rehabilitation in children and adolescents: a systematic review. Neurología (English Edition). 2024;39(1):63-83. doi:10.1016/ J.NRLENG.2023.12.006
10. Saleh N, Salaheldin AM, Badawi M, El-Bialy A. Rehabilitative game-based system for enhancing physical and cognitive abilities of neurological disorders. Cognitive Neurodynamics 2025 19:1. 2025;19(1):1-17. doi:10.1007/S11571-025-10229-X
11. Vezér M, Gresits O, Engh MA, et al. Effectiveness of Video-Game-Based Therapy to Improve Hand Function in Children with Cerebral Palsy: A Systematic Review and Meta-Analysis. J Clin Med. 2024;13(24):7524. doi:10.3390/JCM13247524/S1
12. Munoz-Novoa M, Kristoffersen MB, Sunnerhagen KS, Naber A, Ortiz-Catalan M, Alt Murphy M. Myoelectric pattern recognition with virtual reality and serious gaming improves upper limb function in chronic stroke: a single case experimental design study. Journal of NeuroEngineering and Rehabilitation 2025 22:1. 2025;22(1):1-12. doi:10.1186/S12984-025-01541-Y
13. Yanadel AR, Pérez E, Tettamanti F, Tello EB, López NM. Serious Game Development for the Rehabilitation of Skill Movement in the Upper Limb. IFMBE Proc. 2024;105:262-269. doi:10.1007 /978-3-031-51723-5_33
14. Katz DI, Dwyer B. Clinical Neurorehabilitation: Using Principles of Neurological Diagnosis, Prognosis, and Neuroplasticity in Assessment and Treatment Planning. Semin Neurol. 2021;41(02):111-123. doi:10.1055/S-0041-1725132
15. Laura DG, Silvia T, Nikolaos P, Patrizia P. The Role of fMRI in the Assessment of Neuroplasticity in MS: A Systematic Review. Neural Plast. 2018; 2018(1):3419871. doi:10.1155/2018/3419871
16. Pacheco-Torres J, Moreno A, Fernández B, et al. Functional MRI of Synaptic Plasticity. Handb Behav Neurosci. 2018;28:441-456. doi:10.1016/B9 78-0-12-812028-6.00024-0
17. Foster C, Steventon JJ, Helme D, Tomassini V, Wise RG. Cerebral Metabolic Changes During Visuomotor Adaptation Assessed Using Quantitative fMRI. Front Physiol. 2020;11:497674. doi:10.3389/ FPHYS.2020.00428/BIBTEX
18. Pedrozo D, Graffigna JP, Perez E, et al. FMRI Paradigm to Neurorehabilitation: Preliminary Experimentation. IFMBE Proc. 2024;114:509-520. doi:10.1007/978-3-031-61973-1_48
19. Pérez E, López N, Graffigna JP, et al. Protocolo Para La Evaluación de Neuroplasticidad Aplicado a Tecnologías de Rehabilitación. . Vol 13. Congreso Argentino de educación de ingeniería; 2024.
20. Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM. FSL. Neuroimage. 2012;6 2(2):782-790. doi:10.1016/J.NEUROIMAGE.2011.09.015
21. FreeSurferWiki - Free Surfer Wiki. Accessed November 4, 2025. https://surfer.nmr.mgh.harvard.edu/fswiki
22. Sederevičius D, Vidal-Piñeiro D, Sørensen Ø, et al. Reliability and sensitivity of two whole-brain segmentation approaches included in FreeSurfer – ASEG and SAMSEG. Neuroimage. 2021;237:1181 13. doi:10.1016/J.NEUROIMAGE.2021.118113
23. Anderson T, Lorenser D, Frisken G, Frisken S, Segref A. Anterior and posterior imaging with hyperparallel OCT. Biomedical Optics Express, Vol 14, Issue 6, pp 2678-2688. 2023;14(6):2678-2688. doi:10.1364/BOE.488810
24. About 3D Slicer — 3D Slicer documentation. Accessed November 4, 2025. https://slicer.readthedocs.io/en/latest/user_guide/about.html
25. Zhang Y, Feng H, Zhao Y, Zhang S. Exploring the Application of the Artificial-Intelligence-Integrated Platform 3D Slicer in Medical Imaging Education. Diagnostics 2024, Vol 14, Page 146. 2024;14(2):146. doi:10.3390/DIAGNOSTICS14020146
26. Zhang X, Zhang K, Pan Q, Chang J. Three-dimensional reconstruction of medical images based on 3D slicer. Journal of Complexity in Health Sciences. 2019;2(1):1-12. doi:10.21595/CHS.2019.20724
27. Nieto-Castanon A, Whitfield-Gabrieli S. CONN functional connectivity toolbox: RRID SCR_009550, release 22. CONN functional connectivity toolbox: RRID SCR_009550, release 22. Published online 2022. doi:10.56441/HILBERTPRESS.2246.5840
28. Esteban O, Markiewicz CJ, Blair RW, et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nature Methods 2018 16:1. 2018; 16(1):111-116. doi:10.1038/s41592-018-0235-4
29. Bhattacharjee S, Kashyap R, Abualait T, Annabel Chen SH, Yoo WK, Bashir S. The Role of Primary Motor Cortex: More Than Movement Execution. J Mot Behav. 2021;53(2):258-274. doi: 10.1080/00222895.2020.1738992
30. Driscoll ME, Bollu PC, Tadi P. Neuroanatomy, Nucleus Caudate. StatPearls. Published online July 24, 2023. Accessed November 4, 2025. https://www.ncbi.nlm.nih.gov/books/NBK557407/
31. Javed N, Cascella M. Neuroanatomy, Globus Pallidus. StatPearls. Published online February 20, 2023. Accessed November 4, 2025. https://www.ncbi.nlm.nih.gov/books/NBK557755/
32. Functional differentiation of the premotor cortex: Behavioural and brain imaging studies in humans - the University of Groningen research portal. Accessed November 4, 2025. https://research.rug.nl/en/publications/functional-differentiation-of-the-premotor-cortex-behavioural-and/
33. Proal E, Alvarez-Segura M, de la Iglesia-Vayá M, Martí-Bonmatí L, Castellanos FX, Spanish Resting State Network. Actividad funcional cerebral en estado de reposo: REDES EN CONEXIÓN. Rev Neurol. 2011;52(0 1):S3. Accessed November 4, 2025. https://pmc.ncbi.nlm.nih.gov/articles/PMC4418791/
34. fMRI: resting state and arithmetic task - OpenNeuro. Accessed November 4, 2025. https://openneuro.org/datasets/ds002422/versions/1.0.0
35. Welcome to Python.org. Accessed November 4, 2025. https://www.python.org/
36. SciPy. Accessed November 4, 2025. https://scipy.org/