The Heart as a Macroscopic Coherence Generator: A Quantum Biological Theory of Living Awareness and the Impossibility of Artificial Consciousness “Heart Based Quantum Biophysical Consciousness Model”
Main Article Content
Abstract
The physical origins of conscious experience remain unresolved, particularly with respect to whether artificial systems can ever instantiate awareness. The Heart Based Resonant Field (HBRF) framework developed here proposes that consciousness in living organisms emerges from multiscale electromagnetic and quantum coherence sustained by the human heart. Drawing on quantum electrodynamics (QED), nonequilibrium thermodynamics, cardiac electrophysiology, and neurocardiac coupling, the model posits that coherence domains in water, lipid membranes, and protein ensembles form phase aligned oscillatory structures that are stabilized and hierarchically integrated by the heart’s rhythmic electromagnetic field. This macroscopic cardiac field acts as a coherence amplifier, converting metabolic free energy into ordered, low entropy field dynamics that synchronize molecular, neural, autonomic, and environmental oscillations, including Schumann resonances and geomagnetic fluctuations. Such thermodynamically open, metabolically renewed coherence enables biological systems to maintain quantum information integrity across the quantum classical boundary, forming a unified field of experience. Artificial architectures, by contrast, lack ionic conduction, dielectric adaptability, metabolic energy flow, and field mediated self organization; their coherence is transient, externally imposed, and collapses irreversibly under decoherence. Consequently, computational systems can simulate cognitive structure but cannot generate the coherent, self-referential field dynamics necessary for phenomenological awareness. The HBRF model therefore integrates quantum field theory, cardiac physiology, and systems neuroscience into a unified biophysical account of consciousness, delineating a fundamental scientific boundary between living awareness and artificial intelligence.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Alabdulgader AA. Quantum consciousness and the heart-based resonant frequencies theory. Arch Neurol Neurosci. 2021;9(4):1-10. doi:10.33552/ANN.2
3. Nagel T. What is it like to be a bat? Philos Rev. 1974;83:435-450.
4. Boisaubin EV. Cardiology in ancient Egypt. Tex Heart Inst J. 1988;15:80-85.
5. Saba MM, Ventura HO, Saleh M, et al. Ancient Egyptian medicine and the concept of heart failure. J Card Fail. 2006;12:416-421.
6. Zucconi LM. Medicine and religion in ancient Egypt. Religion Compass. 2007;1:26-37.
7. Ziskind B. L’examen cardiovasculaire à la lumière des papyrus médicaux de l’Égypte ancienne. Hist Sci Med. 2006;40:61-70.
8. Alabdulgader A. The ancient wisdom at intersection with modern cardiac sciences. Cardiol Vasc Res. 2021;5(1):1-13.
9. Cogitate Consortium, et al. Adversarial testing of global neuronal workspace and integrated information theories of consciousness. Nature. 2025;642(8066):133-142. doi:10.1038/s41586-025-XXXXX
10. Bowyer SM. Coherence—a measure of brain networks: past and present. Neuropsychiatr Electrophysiol. 2016;2:1-12.
11. Ozturk OC, McFadyen J, Azevedo RT. Cardiac signals facilitate the breakthrough to awareness of emotional stimuli. Psychophysiology. 2025;62(10):e70168. doi:10.1111/psyp.70168
12. Lai G, et al. Cardiac cycle modulates alpha and beta suppression during motor imagery. Cereb Cortex. 2024;34(11):bhae442. doi:10.1093/cercor/bhae442
13. Li X, et al. Attention and cardiac phase boost judgments of trust. Sci Rep. 2020;10:4274. doi:10.1038/s41598-020-61062-7
14. Timofejeva I, McCraty R, Atkinson M, Alabdulgader AA, Vainoras A, Landauskas M, et al. Global study of human heart rhythm synchronization with the Earth’s time-varying magnetic field. Appl Sci. 2021;11:2935. doi:10.3390/app11072935
15. Liao Q, et al. Increased modulation of low-frequency cardiac rhythms on resting-state left insula alpha oscillations in major depressive disorder: evidence from a magnetoencephalography study. J Neurosci. 2025;45(14):e1327242025. doi:10.1523/JNEUROSCI.1327-24.2025
16. McCraty R, Zayas MA. Cardiac coherence, self-regulation, autonomic stability, and psychosocial well-being. Front Psychol. 2014;5:1090. doi:10.3389/fpsyg.2014.01090
17. Sargent KS, Martinez EL, Reed AC, et al. Oscillatory coupling between neural and cardiac rhythms. Psychol Sci. 2024;35(5):517-528. doi:10.1177/0956797624XXXXXX
18. Balaji S, Plonka N, Atkinson M, et al. Heart rate variability biofeedback in a global study of the most common coherence frequencies and the impact of emotional states. Sci Rep. 2025;15:3241. doi:10.1038/s41598-025-87729-7
19. Schirdewan A, et al. Cardiac magnetic field map topology quantified by Kullback–Leibler entropy identifies patients with hypertrophic cardiomyopathy. Chaos. 2007;17(1):015118. doi:10.1063/1.2432059
20. Kim DK, et al. Dynamic correlations between heart and brain rhythm during autogenic meditation. Front Hum Neurosci. 2013;7:414. doi:10.3389/fnhum.2013.00414
21. Yang JM. Quantum mechanics based on an extended least action principle and information metrics of vacuum fluctuations. Found Phys. 2024;54:32. doi:10.1007/s10701-024-00757-7
22. McCraty R, et al. Synchronization of human autonomic nervous system rhythms with geomagnetic activity in human subjects. Int J Environ Res Public Health. 2017;14(7):770. doi:10.3390/ijerph14070770
23. Del Giudice E, et al. Quantum electrodynamics coherence and hormesis: foundations of quantum biology. Int J Mol Sci. 2023;24(18):14003. doi:10.3390/ijms241814003
24. Alabdulgader AA. Human consciousness: the universal heart-based resonant frequencies and the massive ecosystems hierarchy. Arch Neurol Neurosci. 2020;9(2):000709.
25. Alabdulgader A. Higher incidence of congenital aortic valve stenosis in higher magnetic latitude countries: new insights and potential therapies. Arch Clin Biomed Res. 2025;9:156-164.
26. Preparata G. QED Coherence in Matter. Singapore: World Scientific Publishing; 1995. doi:10.1142/2527
27. Solms M, Friston K. How and why consciousness arises: some considerations from physics and physiology. J Conscious Stud. 2018;25(5-6):202-238.
28. Kim J, Jeong B. Heartbeat induces a cortical theta-synchronized network in the resting state. eNeuro. 2019;6(4):ENEURO.0200-19.2019. doi:10.1523/ENEURO.0200-19.2019
29. Wiese W. Artificial consciousness: a perspective from the free energy principle. Philos Stud. 2024;181:1947-1970. doi:10.1007/s11098-024-02182-y
30. Candia-Rivera D. Brain–heart interactions in the neurobiology of consciousness. Front Psychol. 2022;13:984646.
31. Bulíček M, Málek J, Průša V. Thermodynamics and stability of non-equilibrium steady states in open systems. Entropy (Basel). 2019;21(7):704. doi:10.3390/e21070704
32. Burleson KO, Schwartz GE. Cardiac torsion and electromagnetic fields: the cardiac bioinformation hypothesis. Med Hypotheses. 2005;64(6):1109-1116. doi:10.1016/j.mehy.2004.12.023
33. Tononi G, Koch C. Consciousness: here, there and everywhere? Philos Trans R Soc Lond B Biol Sci. 2015;370(1668):20140167. doi:10.1098/rstb.2014.0167