Metadichol Orchestrates Cellular Reprogramming and Regenerative Pathways via FOX Transcription Factor Networks: Implications for Immune–Metabolic Rejuvenation

Main Article Content

P. R. Raghavan

Abstract

Significance: The 2025 Nobel Prize in Physiology or Medicine was awarded to Mary E. Brunkow, Fred Ramsdell, and Shimon Sakaguchi for their groundbreaking discoveries concerning peripheral immune tolerance, specifically identifying the FOXP3 gene as the master regulator of regulatory T cells (Tregs). Their work demonstrated that FOXP3 mutations cause severe autoimmune disease (IPEX syndrome), establishing FOXP3 as essential for immune self-tolerance. This study demonstrates that Metadichol significantly upregulates FOXP3 expression (5.46-fold), providing a novel pharmacological approach to enhance regulatory T-cell function and immune homeostasis—directly relevant to the Nobel Prize-winning discoveries. 


Background: Forkhead box (FOX) transcription factors constitute a large family of regulatory proteins that control diverse cellular processes, including development, metabolism, immunity, and aging. Metadichol, a nano lipid formulation derived from long-chain alcohols, has demonstrated pleiotropic biological effects, including immunomodulation and metabolic regulation. 


Objective: To comprehensively evaluate the effects of metadichol treatment on FOX transcription factor gene expression in human peripheral blood mononuclear cells (PBMCs) via quantitative PCR analysis. 


Methods: Human PBMCs were isolated via Histopaque density gradient centrifugation and treated with Metadichol at concentrations of 1 pg/ml, 100 pg/ml, 1 ng/ml, and 100 ng/ml. Total RNA was extracted, reverse-transcribed, and analyzed by quantitative PCR for 45 FOX genes. Gene expression changes were calculated via normalization to GAPDH via the 2^-ΔΔCq method. 


Results: Metadichol treatment resulted in dose-dependent modulation of FOX gene expression. At the highest concentration (100 ng/ml), significant upregulation of multiple FOX genes was observed, with FOXO1 showing the greatest increase (8.74-fold), followed by FOXA1 (7.39-fold) and FOXH1 (7.22-fold). Additional substantial increases were noted for FOXA2 (6.57-fold), FOXA3 (6.98-fold), FOXB1 (6.79-fold), FOXP3 (5.46-fold), and FOXP4 (6.23-fold). Conversely, selective downregulation was observed for FOXL2 (0.16-fold), FOXL1 (0.54-fold), and FOXD4L1 (0.56-fold). 


Conclusions: Metadichol has potent and selective effects on FOX transcription factor expression in human PBMCs, with preferential upregulation of genes involved in metabolic regulation, immune homeostasis, induced pluripotency and cellular longevity pathways. These findings suggest potential therapeutic applications in age-related diseases, metabolic disorders, and immunomodulation, and regenerative medicine. Importantly, the coordinated upregulation of pluripotency-associated genes, including FOXD3, FOXO1, and FOXM1, establishes Metadichol as a compelling modulator of cellular reprogramming networks with significant implications for advancing stem cell-based regenerative therapies. The differential expression patterns indicate complex regulatory mechanisms that warrant further investigation to elucidate their clinical translation potential.

Keywords: Fox family, Metadichol, immune metabolic rejuvenation, nuclear receptors, SOX family, Toll-like receptors, KLFs, sirtuins, circadian genes, GDF11, TERT, Klotho, induced pluripotency, regenerative medicine, 2025 Nobel Prize, FOXP3, regulatory T cells, immune tolerance

Article Details

How to Cite
RAGHAVAN, P. R.. Metadichol Orchestrates Cellular Reprogramming and Regenerative Pathways via FOX Transcription Factor Networks: Implications for Immune–Metabolic Rejuvenation. Medical Research Archives, [S.l.], v. 14, n. 1, jan. 2026. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/7160>. Date accessed: 03 feb. 2026. doi: https://doi.org/10.18103/mra.v14i1.7160.
Section
Research Articles

References

1. Hannenhalli S, Kaestner KH. The evolution of Fox genes and their role in development and disease. Nat Rev Genet. 2009;10(4):233-240. doi:10.1038/ nrg2523

2. Katoh M, Igarashi M, Fukuda H, Nakagama H, Katoh M. Cancer genetics and genomics of human FOX family genes. Cancer Lett. 2013;328(2):198-206. doi:10.1016/j.canlet.2012.09.017

3. Coffer PJ, Burgering BM. Forkhead-box transcription factors and their role in the immune system. Nat Rev Immunol. 2004;4(11):889-899. doi:10.1038/nri1488

4. Friedman JR, Kaestner KH. The Foxa family of transcription factors in development and metabolism. Cell Mol Life Sci. 2006;63(19-20):2317 -2328. doi:10.1007/s00018-006-6095-6

5. Kaestner KH. The FoxA factors in organogenesis and differentiation. Curr Opin Genet Dev. 2010;20 (5):527-532. doi:10.1016/j.gde.2010.06.005

6. Zaal A, Nota B, Moore KS, et al. TLR4 and C5aR crosstalk in dendritic cells induces a core regulatory network of RSK2, PI3Kβ, SGK1, and FOXO transcription factors. J Leukoc Biol. 2017;102(4):10 35-1054. doi:10.1189/jlb.2A0717-310R

7. Tia N, Singh AK, Pandey P, et al. Role of Forkhead Box O (FOXO) transcription factor in aging and diseases. Gene. 2018;648:97-105. doi:10.1016/j.gene.2018.01.051

8. Wang Y, Zhou Y, Graves DT. FOXO transcription factors: their clinical significance and regulation. Biomed Res Int. 2014;2014:925350. doi:10.1155/ 2014/925350

9. Clark KL, Halay ED, Lai E, Burley SK. Cocrystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature. 1993;364 (6436):412-420. doi:10.1038/364412a0

10. Laissue P. The forkhead-box family of transcription factors: key molecular players in colorectal cancer pathogenesis. Mol Cancer. 2019;18(1):5. doi:10.1186/s12943-019-0938-x

11. Castaneda M, Hollander P, Mani SA. Forkhead box transcription factors: double-edged swords in cancer. Cancer Res. 2022;82(11):2057-2065. doi:10 .1158/0008-5472.CAN-21-3371

12. Jiramongkol Y, Lam EW. FOXO transcription factor family in cancer and metastasis. Cancer Metastasis Rev. 2020;39(3):681-709. doi:10.1007/ s10555-020-09883-w

13. Liu N, Wang A, Xue M, et al. FOXA1 and FOXA2: the regulatory mechanisms and therapeutic implications in cancer. Cell Death Discov. 2024; 10(1):76. doi:10.1038/s41420-024-01820-6

14. Lu L, Barbi J, Pan F. The regulation of immune tolerance by FOXP3. Nat Rev Immunol. 2017;17 (11):703-717. doi:10.1038/nri.2017.75

15. Maiese K. Targeting the core of neurodegeneration: FoxO, mTOR, and SIRT1. Neural Regen Res. 2021; 16(3):448-455. doi:10.4103/1673-5374.291382

16. Afanas'ev I. Reactive Oxygen Species and Age-Related Genes p66Shc, Sirtuin, FoxO3 and Klotho in Senescence. Oxid Med Cell Longev. 2010;3(2): 77-85. doi:10.4161/oxim.3.2.11182

17. Zhang Y, Ma XL, Wang Y, et al. FOXA1: A Pioneer of Nuclear Receptor Action in Breast Cancer. Front Oncol. 2021;11:853709. doi:10.3389 /fonc.2021.853709

18. Zhao S, Zeng Y, Liao Y, et al. FOXA1 and FOXA2: the regulatory mechanisms and therapeutic implications in steroid hormone-induced malignancies. Front Endocrinol (Lausanne). 2024;15:1009302. doi:10.3389/fendo.2024.1009302

19. Yánez DC, Lau CI, Papaioannou E, et al. The Pioneer Transcription Factor Foxa2 Modulates T Helper Differentiation to Reduce Mouse Allergic Airway Disease. Front Immunol. 2022;13:890781. doi:10.3389/fimmu.2022.890781

20. Lee SH, Kim H, Park JW. Haploinsufficiency of the FOXA2 associated with a complex clinical phenotype. Front Genet. 2020;11:284027. doi:10. 3389/fgene.2020.284027

21. Vera S, Zaragoza C, Aranda JF, et al. FOXA3 Polymorphisms Are Associated with Metabolic Parameters in Individuals With and Without Subclinical Atherosclerosis. Medicina (Kaunas). 2022;58(4):441. doi:10.3390/medicina58040441

22. Shao Z, Mak SH, Wang H, et al. Foxb1 Regulates Negatively the Proliferation of Oligodendrocyte Progenitor Cells and Promotes Their Differentiation. Front Neurosci. 2017;11:440. doi:10.3389/fnins.2017.00440

23. Wang J, Yang L, Liu Y, et al. FOXD1 is a prognostic biomarker and correlated with macrophages infiltration in head and neck squamous cell carcinoma. Aging (Albany NY). 2021;13(13):17255-17268. doi: 10.18632/aging.202974

24. Berenguer M, Fernández-Sánchez N, Aguirre M, et al. Association of FOXD1 variants with adverse pregnancy outcomes in Southern Europeans. PLoS One. 2016;11(10):e0163673. doi:10.1371/journal.pone.0163673

25. Long Y, Jin L, Fu Y, et al. Forkhead box protein D2 suppresses colorectal cancer by transactivating p53-responsive genes. Nucleic Acids Res. 2023;51 (9):5052-5069. doi:10.1093/nar/gkad289

26. Ruf R, Kousorn P, Larsen CK, et al. Implication of FOXD2 dysfunction in syndromic congenital anomalies of the kidney and urinary tract via WNT signaling. Kidney Int. 2023;103(4):847-849. doi:10. 1016/j.kint.2022.12.023

27. Wang XC, et al. Upregulation of lnc-FOXD2-AS1, CDC45, and CDK1 in patients with acute myeloid leukemia. Hematology. 2024;29(2):e1539. doi:10.1080/16078454.2023.2294569

28. Vasudevan S, Choi M, Boothe T, et al. Emerging Roles and Mechanisms of lncRNA FOXD3-AS1 in Human Diseases: A Review. Front Oncol. 2022;12:914342. doi:10.3389/fonc.2022.914342

29. Teng Y, Wu X, Wu Y, et al. Requirement for Foxd3 in maintenance of neural crest progenitors. Dev Biol. 2008;314(2):473-486. doi:10.1016/j. ydbio.2007.11.032

30. Sherman LS, Ye D, Merzdorf CS. Foxd4 is essential for establishing neural cell fate and for neuronal differentiation. Mol Cell Neurosci. 2017; 80:37-49. doi:10.1016/j.mcn.2017.03.006

31. Landa I, Ruiz-Llorente S, Montero-Conde C, et al. The Variant rs1867277 in FOXE1 Gene Confers Thyroid Cancer Susceptibility Through the Recruitment of USF1/USF2 Transcription Factors. PLoS Genet. 2009;5(9):e1000637. doi:10.1371/ journal.pgen.1000637

32. Suárez-Fariñas M, Du J, Wang Z, et al. Reduced expression of FOXE1 in differentiated thyroid cancer, the role of DNA methylation in T and NT tissues. Front Endocrinol (Lausanne). 2024;15: 1586194. doi:10.3389/fendo.2024.1586194

33. Yu X, Liu R, Li X, et al. Exploration of the association between FOXE1 gene polymorphism and differentiated thyroid cancer: a meta-analysis. BMC Med Genet. 2018;19:100. doi:10.1186/s12 881-018-0604-y

34. Dharmadhikari AV, Lopes F, Hamosh A, et al. Genomic and epigenetic complexity of the FOXF1 locus in 16q24.1: implications for development and disease. Hum Genet. 2015;134(7):749-768. doi:10. 1007/s00439-015-1551-7

35. Stankiewicz P, Sen P, Bhatt SS, et al. Analysis of FOXF1 and the FOX gene cluster in patients with VACTERL association. Am J Med Genet A. 2011 ;155A(2):273-280. doi:10.1002/ajmg.a.33773

36. Li X, Wang Y, Wu Y, et al. The regulatory roles and mechanisms of the transcription factor FOXF2 in health and disease. Cancer Lett. 2021;498:195-207. doi:10.1016/j.canlet.2020.11.033

37. Song Y, Zhu X, Harada S, et al. Foxf2 plays a dual role during transforming growth factor beta-induced epithelial-to-mesenchymal transition and fibrosis of breast cancer cells. Breast Cancer Res. 2018;20(1):104. doi:10.1186/s13058-018-1043-6

38. Kortüm F, Caputo V, Bauer CK, et al. FOXG1-Related Disorders: From Clinical Description to Molecular Mechanisms. Brain Dev. 2011;33(10): 813-823. doi:10.1016/j.braindev.2011.04.004

39. Mitter D, Denecke J, Kresimon J, et al. FOXG1 syndrome. GeneReviews. 2025. PMID: 31514244.

40. Hoodless PA, Pye M, Chazaud C, et al. FoxH1 (Fast) functions to specify the anterior primitive streak in the mouse. Genes Dev. 2001;15(10):1257-1271. doi:10.1101/gad.881501

41. Pan W, Hsu Y, Wang Y, et al. The role of Forkhead box family in bone metabolism and diseases. Front Pharmacol. 2022;13:772237. doi: 10.3389/fphar.2021.772237

42. Tkatchenko TV, Visel A, Thompson CL, et al. FoxK1 associated gene regulatory network in hepatic insulin action. Mol Metab. 2023;70:1017 48. doi:10.1016/j.molmet.2023.101748

43. Liu B, Liu S, Li S, Hu S, Lin J, Mo X. FOXK2 transcription factor and its roles in tumorigenesis (Review). Oncol Lett. 2022;24(6):433. doi:10.3892/ ol.2022.13472

44. Yang G, Li W, Si T, et al. FOXL1 regulates lung fibroblast function via multiple mechanisms. Am J Respir Cell Mol Biol. 2020;63(4):468-479. doi:10.11 65/rcmb.2020-0199OC

45. Laissue P. The Genetic and Clinical Features of FOXL2-Related Disorders: A Review. Int J Mol Sci. 2021;22(5):2442. doi:10.3390/ijms22052442

46. Myatt SS, Lam EW. The emerging roles of forkhead box (Fox) proteins in cancer. Nat Rev Cancer. 2007;7(11):847-859. doi:10.1038/nrc2223

47. Vaidya HJ, Briones Leon A, Blackburn CC. FOXN1 in thymus organogenesis and development. Eur J Immunol. 2016;46(8):1826-1837. doi:10.1002 /eji.201646423

48. Li Y, Yan C, Li J, et al. FOXN2 inhibits breast cancer progression by suppressing EMT and stemness via inactivation of Wnt/β-catenin signaling pathway. Cell Death Dis. 2020;11(11): 472. doi:10.1038/s41419-020-02764-z

49. Wang C, Qiu J, Chen M, et al. Novel tumor-suppressor FOXN3 is downregulated in adult acute myeloid leukemia and suppresses tumor cell proliferation and promotes apoptosis in vitro. Oncol Lett. 2019;18(2):1044-1054. doi:10.3892/ ol.2019.1042

50. Li S, Mo Z, Yang X, Price SM, Shen MM, Xiang M. Foxn4 controls the genesis of amacrine and horizontal cells by retinal progenitors. Neuron. 2004;43(6):795-807. doi:10.1016/j.neuron.2004.08.033

51. Liong S, Mu T, Wang G, Jiang X. A Review of FoxO1-Regulated Metabolic Diseases and Related Drug Discoveries. Cells. 2020;9(1):184. doi:10.33 90/cells9010184

52. Willcox BJ, Donlon TA, He Q, et al. FOXO3A genotype is strongly associated with human longevity. Proc Natl Acad Sci U S A. 2008;105 (37):13987-13992. doi:10.1073/pnas.0801030105

53. Liu J, Liu S, Ma Q, et al. Current perspective on the regulation of FOXO4 and its role in disease and metabolic regulation. Exp Cell Res. 2019;381(1):1-7. doi:10.1016/j.yexcr.2019.04.004

54. van der Heide LP, Jacobs FM, Burbach JP, Hoekman MF, Smidt MP. FoxO6 transcriptional activity is regulated by Thr26 and Ser184, independent of nucleocytoplasmic shuttling. Biochem J. 2005; 391(Pt 3):623-629. doi:10.1042/BJ20050890

55. Hisaoka T, Nakamura Y, Senba E. FOXP1: A novel player in neurodevelopmental disorders, including FOXP1 syndrome. J Hum Genet. 2022;67 (2):79-90. doi:10.1038/s10038-021-00988-w

56. Fisher SE, Scharff C. FOXP2 as a molecular window into speech and language. Trends Genet. 2009;25(4):166-177. doi:10.1016/j.tig.2009.03.002

57. Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 200 8;133(5):775-787. doi:10.1016/j.cell.2008.05.009

58. Bonkowski MS, Sinclair DA. FOXP genes: Guardians of tissue identity. Nat Cell Biol. 2016; 18(11):1181-1182. doi:10.1038/ncb3423

59. Kaneda H, Arao T, Tanaka K, et al. FOXQ1 is overexpressed in colorectal cancer and enhances invasion ability. Br J Cancer. 2010;103(4):541-551. doi:10.1038/sj.bjc.6605786

60. Santo EE, Ebus ME, Koster J, et al. Oncogenic activation of FOXR1 by 11q23 intrachromosomal deletion-fusions in neuroblastoma. Oncogene. 2012;31(8):928-936. doi:10.1038/onc.2011.344

61. Mota A, Waxman HK, Hong R, et al. FOXR1 regulates stress response pathways and is necessary for proper brain development. PLoS Genet. 2021; 17(11):e1009854. doi:10.1371/journal.pgen.1009854

62. Lee Y, Zhang Y, Kim S, et al. FOXR2 interacts with MYC to promote its transcriptional activities and oncogenic transformation. Cancer Res. 2016; 76(12):3471-3482. doi:10.1158/0008-5472.CAN-15-3132

63. Wang Y, Chen C, Lohr J, et al. FOXR2 Stabilizes MYCN Protein and Identifies non-MYCN-amplified Neuroblastoma Patients With Unfavorable Outcome. J Clin Invest. 2021;131(12):e148076. doi:10.1172/JCI148076

64. Lin S, Wu R, Zhu X, et al. Pan-Cancer Analysis Predicts FOXS1 as a Key Target in Prognosis and Tumor Immune Microenvironment. Front Immunol. 2022;13:844558. doi:10.3389/fimmu.2022.844558

65. Bernardo GM, Keri RA. FOXA1: a transcription factor with parallel functions in development and cancer. Biosci Rep. 2012;32(2):113-130. doi:10.1 042/BSR20110046

66. Grabowska MM, Elliott AD, DeGraff DJ, et al. NFI transcription factors interact with FOXA1 to regulate prostate-specific gene expression. Mol Endocrinol. 2014;28(6):949-964. doi:10.1210/me.2013-1213

67. Lee CS, Friedman JR, Fulmer JT, Kaestner KH. The initiation of liver development is dependent on Foxa transcription factors. Nature. 2005;435(7044): 944-947. doi:10.1038/nature03649

68. Domanskyi A, Alter H, Vogt MA, et al. Transcription factors Foxa1 and Foxa2 are required for adult dopamine neurons maintenance. Front Cell Neurosci. 2014;8:275. doi:10.3389/fncel.2014.00275

69. Xiong Y, Khanna S, Grzenda AL, et al. Polycomb antagonizes p300/CREB-binding protein-associated factor to silence FOXP3 in a Kruppel-like factor-dependent manner. J Biol Chem. 2012;287(13): 10021-10031. doi:10.1074/jbc.M111.282442

70. Hedrick SM, Michelini RH, Doedens AL, Goldrath AW, Stone EL. FOXO transcription factors throughout T-cell biology. Nat Rev Immunol. 2012;12(9):649-661. doi:10.1038/nri3278

71. Brunet A, Sweeney LB, Sturgill JF, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science. 2004;30 3(5666):2011-2015. doi:10.1126/science.1094637

72. Ouyang W, Beckett O, Flavell RA, Li MO. An essential role of the Forkhead-box transcription factor Foxo1 in control of T-cell homeostasis and tolerance. Immunity. 2009;30(3):358-371. doi:10.1 016/j.immuni.2009.02.003

73. Konopacki C, Pritykin Y, Rubtsov Y, et al. Transcription factor Foxp1 regulates Foxp3 chromatin binding and coordinates regulatory T-cell function. Nat Immunol. 2019;20(2):232-242. doi:10.1038/s41590-018-0291-z

74. Harada Y, Harada Y, Elly C, et al. Transcription factors Foxo3a and Foxo1 couple the E3 ligase Cbl-b to the induction of Foxp3 expression in induced regulatory T cells. J Exp Med. 2010;207(7): 1381-1391. doi:10.1084/jem.20100004

75. Raghavan PR. Metadichol is a natural ligand for the expression of Yamanaka reprogramming factors in human cardiac, fibroblast, and cancer cell lines. Medical Research Archives. 2024;12(6). doi:10.18103/mra.v12i6.5323

76. Raghavan PR. Policosanol Nanoparticles. US patents 8,722,093 (2014), 9,006,292 (2015).

77. Raghavan PR. VDR inverse agonism by metadichol enhances VDBP-mediated immunity. Preprints.org. 2025. doi:10.20944/preprints202506.0491.v1

78. Raghavan PR. Inhibition of Dengue and other enveloped viruses by Metadichol, a novel Nano emulsion Lipid. J Sci Heal Outcomes. 2016;14(2):8-17.

79. Raghavan PR. In vitro inhibition of zika virus by Metadichol, a novel nano emulsion lipid. J Immunol Tech Infect Dis. 2016;5:4.

80. Raghavan PR. Metadichol: A Novel Nanolipid Formulation That Inhibits SARS-CoV-2 and a Multitude of Pathological Viruses In Vitro. Biomed Res Int. 2022;2022:1558860. doi:10.1155/2022/1558860

81. Raghavan PR. Metadichol induced high levels of vitamin C: case studies. Vitam Miner. 2017;6:1-5.

82. Raghavan PR. The Quest for Immortality: Introducing Metadichol a Novel Telomerase Activator. Stem Cell Res Ther. 2019;9:446. doi:10. 4172/2157-7633.1000446

83. Raghavan PR. Metadichol Modulates the DDIT4-mTOR-p70S6K Axis: A Novel Therapeutic Strategy for mTOR-Driven Diseases. Preprints. 2025;2025041573.

84. Boyum A. Isolation of mononuclear cells and granulocytes from human blood. Scand J Clin Lab Invest. 1968;21:77-89. doi:10.3109/00365516809076996

85. Morgan DM, Ruscetti FW. T lymphocyte colony formation in agar medium. J Immunol. 1970;10 4(5):1130-1136.

86. Chomczynski P, Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 ;162(1):156-159. doi:10.1016/0003-2697(87)90021-2

87. Freeman WM, Walker SJ, Vrana KE. Quantitative RT-PCR: pitfalls and potential. Biotechniques. 1999; 26(1):112-125. doi:10.2144/99261rv01

88. Bustin SA. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol. 2000; 25(2):169-193. doi:10.1677/jme.0.0250169

89. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402-408. doi:10.1006/meth.2001.1262

90. Pike JW, Meyer MB. The vitamin D receptor: new paradigms for the regulation of gene expression by 1,25-dihydroxyvitamin D3. Endocrinol Metab Clin North Am. 2010;39(2):255-269. doi:10. 1016/j.ecl.2010.02.007

91. Kersten S, Desvergne B, Wahli W. Roles of PPARs in health and disease. Nature. 2000;405 (6785):421-424. doi:10.1038/35013000

92. Heldring N, Pike A, Andersson S, et al. Estrogen receptors: how do they signal and what are their targets. Physiol Rev. 2007;87(3):905-931. doi:10.1152/physrev.00026.2006

93. Carlberg C, Seuter S. Dynamics of nuclear receptor target gene regulation. Chromosoma. 2010;119(5):479-484. doi:10.1007/s00412-010-0283-8

94. Pike JW, Meyer MB, Lee SM, et al. The vitamin D receptor: contemporary genomic approaches reveal new basic and translational insights. J Clin Invest. 2017;127(4):1146-1154. doi:10.1172/JCI88887

95. An BS, Tavera-Mendoza LE, Bhavnani SK, et al. Stimulation of Sirt1-regulated FoxO protein function by the ligand-bound vitamin D receptor. Mol Cell Biol. 2010;30(20):4890-4900. doi:10.1128 /MCB.00180-10

96. Carroll JS, Liu XS, Brodsky AS, et al. Chromosome-wide mapping of estrogen receptor binding reveals long-range regulation requiring the forkhead protein FoxA1. Cell. 2005;122(1):33-43. doi:10.1016/j.cell.2005.05.008

97. Wolfrum C, Stoffel M. Coactivation of Foxa2 through Pgc-1beta promotes liver fatty acid oxidation and triglyceride/VLDL secretion. Cell Metab. 2006;3(2):99-110. doi:10.1016/j.cmet.2006.01.001

98. Nakae J, Cao Y, Daitoku H, et al. The LXXLL motif of murine forkhead transcription factor FoxO1 mediates Sirt1-dependent transcriptional activity. J Clin Invest. 2006;116(9):2473-2483. doi:10.1172/JCI25518

99. Ryffel GU. Mutations in the human genes encoding the transcription factors of the hepatocyte nuclear factor (HNF)1 and HNF4 families: functional and pathological consequences. J Mol Endocrinol. 2001;27(1):11-29. doi:10.1677/jme.0.0270011

100. Accili D, Arden KC. FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell. 2004;117(4):421-426. doi:10.1016/S0092-8674(04)00452-0

101. Gross DN, van den Heuvel AP, Birnbaum MJ. The role of FoxO in the regulation of metabolism. Oncogene. 2008;27(16):2320-2336. doi:10.1038/ onc.2008.25

102. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4(7):499-511. doi:10.1038/nri1391

103. Kawai T, Akira S. TLR signaling. Cell Death Differ. 2006;13(5):816-825. doi:10.1038/sj.cdd.4401850

104. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature. 2001;413(6857):732-738. doi:10.1038/35099560

105. Kawai T, Akira S. Toll-like receptor and RIG-I-like receptor signaling. Ann N Y Acad Sci. 2008;1143:1-20. doi:10.1196/annals.1443.020

106. Gerriets VA, Kishton RJ, Johnson MO, et al. Foxp3 and Toll-like receptor signaling balance Treg cell anabolic metabolism for suppression. Nat Immunol. 2016;17(12):1459-1466. doi:10.1038/ni.3577

107. Fan W, Morinaga H, Kim JJ, et al. FoxO1 regulates Tlr4 inflammatory pathway signalling in macrophages. EMBO J. 2010;29(24):4223-4236. doi:10.1038/emboj.2010.268

108. Liu T, Zhang L, Joo D, Sun SC. NF-κB signaling in inflammation. Signal Transduct Target Ther. 2017;2:17023. doi:10.1038/sigtrans.2017.23

109. Kawai T, Akira S. Signaling to NF-κB by Toll-like receptors. Trends Mol Med. 2007;13(11):460-469. doi:10.1016/j.molmed.2007.09.002

110. Brunet A, Sweeney LB, Sturgill JF, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science. 2004;3 03(5666):2011-2015. doi:10.1126/science.1094637

111. Motta MC, Divecha N, Lemieux M, et al. Mammalian SIRT1 represses forkhead transcription factors. Cell. 2004;116(4):551-563. doi:10.1016/S0 092-8674(04)00126-6

112. Kobayashi Y, Furukawa-Hibi Y, Chen C, et al. SIRT1 is critical regulator of FOXO-mediated transcription in response to oxidative stress. Int J Mol Med. 2005;16(2):237-243. doi:10.3892/ijmm.16.2.237

113. van der Horst A, Tertoolen LG, de Vries-Smits LM, et al. FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2(SIRT1). J Biol Chem. 2004;279(28):28873-28879. doi:10.1074/jbc.M401138200

114. Yang Y, Hou H, Haller EM, Nicosia SV, Bhalla K. Suppression of FOXO1 activity by FHL2 through SIRT1-mediated deacetylation. EMBO J. 2005; 24(5):1021-1032. doi:10.1038/sj.emboj.7600570

115. Dominy JE Jr, Lee Y, Gerhart-Hines Z, Puigserver P. Nutrient-dependent regulation of PGC-1alpha's acetylation state and metabolic function through the enzymatic activities of Sirt1/GCN5. Biochim Biophys Acta. 2010;1804 (8):1676-1683. doi:10.1016/j.bbapap.2009.11.023

116. van Loosdregt J, Vercoulen Y, Guichelaar T, et al. Regulation of Treg functionality by acetylation-mediated Foxp3 protein stabilization. Blood. 2010; 115(5):965-974. doi:10.1182/blood-2009-02-207118

117. Haigis MC, Sinclair DA. Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol. 2010;5:253-295. doi:10.1146/annurev. pathol.4.110807.092250

118. Satoh A, Stein L, Imai S. The role of mammalian sirtuins in the regulation of metabolism, aging, and longevity. Handb Exp Pharmacol. 2011;206:125-162. doi:10.1007/978-3-642-21631-2_7

119. McConnell BB, Yang VW. Mammalian Krüppel -like factors in health and diseases. Physiol Rev. 2010;90(4):1337-1381. doi:10.1152/physrev.00058.2009

120. Jeon BN, Choi WI, Yu MY, et al. ZBTB2, a novel master regulator of the p53 pathway. J Biol Chem. 2009;284(27):17935-17946. doi:10.1074/ jbc.M809559200

121. Pearson R, Fleetwood J, Eaton S, Crossley M, Bao S. Krüppel-like transcription factors: a functional family. Int J Biochem Cell Biol. 2008;40 (10):1996-2001. doi:10.1016/j.biocel.2007.07.018

122. Xiong Y, Hla A, Bhagat S, et al. KLF4 functions as a regulator of FOXP3 expression in regulatory T cells. Blood. 2012;120(21):4248.

123. Das H, Kumar A, Lin Z, et al. Kruppel-like factor 2 (KLF2) regulates proinflammatory activation of monocytes. Proc Natl Acad Sci U S A. 2006;1 03(17):6653-6658. doi:10.1073/pnas.0508235103

124. Carlson CM, Endrizzi BT, Wu J, et al. Kruppel-like factor 2 regulates thymocyte and T-cell migration. Nature. 2006;442(7100):299-302. doi:10.1038/nature04882

125. Gray S, Wang B, Orber Y, et al. Regulation of gluconeogenesis by Krüppel-like factor 15. Cell Metab. 2007;5(4):305-312. doi:10.1016/j.cmet.2007.03.002

126. Neve B, Fernandez-Zapico ME, Ashkenazi-Katalan V, et al. Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell function. Proc Natl Acad Sci U S A. 2005;102(13):4807-4812. doi:10.1073/pnas. 0409177102

127. Kang L, Lai MD. BTEB/KLF9 and its transcriptional regulation. Yi Chuan. 2007;29(2): 129-135. doi:10.1360/yc-007-0129

128. Oishi K, Shirai H, Ishida N. CLOCK is involved in the circadian transactivation of peroxisome-proliferator-activated receptor alpha (PPARalpha) in mice. Biochem J. 2005;386(Pt 3):575-581. doi:10.1042/BJ20041150

129. Yang X, Downes M, Yu RT, et al. Nuclear receptor expression links the circadian clock to metabolism. Cell. 2006;126(4):801-810. doi:10.101 6/j.cell.2006.06.050

130. Chaves I, van der Horst GT, Schellevis R, et al. Insulin-FOXO3 signaling modulates circadian rhythms via regulation of clock transcription. Curr Biol. 2014;24(11):1248-1255. doi:10.1016/j.cub. 2014.04.018

131. Dang F, Sun X, Ma X, et al. Insulin post-transcriptionally modulates Bmal1 protein to affect the hepatic circadian clock. Nat Commun. 2016;7:12696. doi:10.1038/ncomms12696

132. Vollmers C, Gill S, DiTacchio L, et al. Time of feeding and the intrinsic circadian clock drive rhythms in hepatic gene expression. Proc Natl Acad Sci U S A. 2009;106(50):21453-21458. doi:10.1073/pnas.0909591106

133. Marcheva B, Ramsey KM, Buhr ED, et al. Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature. 2010;466(7306):627-631. doi:10.1038/ nature09253

134. Nakahata Y, Kaluzova M, Grimaldi B, et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell. 2008;134(2):329-340. doi:10.1016/j.cell.2008.07.002

135. Kuro-o M, Matsumura Y, Aizawa H, et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997;390 (6655):45-51. doi:10.1038/36285

136. Kurosu H, Yamamoto M, Clark JD, et al. Suppression of aging in mice by the hormone Klotho. Science. 2005; 309(5742):1829-1833. doi:10.1126/science.1112766

137. Yamamoto M, Clark JD, Pastor JV, et al. Regulation of oxidative stress by the anti-aging hormone klotho. J Biol Chem. 2005;280(45):38029-38034. doi:10.1074/jbc.M509039200

138. Kurosu H, Ogawa Y, Miyoshi M, et al. Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem. 2006;281(10):6120-6123. doi:10.1074/jbc.C500457200

139. Liu H, Fergusson MM, Castilho RM, et al. Augmented Wnt signaling in a mammalian model of accelerated aging. Science. 2007;317(5839): 803-806. doi:10.1126/science.1143578

140. Zhou L, Li Y, Zhou D, et al. Loss of Klotho contributes to kidney injury by derepression of Wnt/β-catenin signaling. J Am Soc Nephrol. 2013;2 4(5):771-785. doi:10.1681/ASN.2012080865

141. Ikushima M, Rakugi H, Ishikawa K, et al. Anti-apoptotic and anti-senescence effects of Klotho on vascular endothelial cells. Biochem Biophys Res Commun. 2006;339(3):827-832. doi:10.1016/j.bbr c.2005.11.094

142. Xu Y, Sun Z. Molecular basis of Klotho: from gene to function in aging. Endocr Rev. 2015;36 (2):174-193. doi:10.1210/er.2013-1079

143. Cong YS, Wright WE, Shay JW. Human telomerase and its regulation. Microbiol Mol Biol Rev. 2002;66(3):407-425. doi:10.1128/MMBR.66.3. 407-425.2002

144. Kyo S, Takakura M, Fujiwara T, Inoue M. Understanding and exploiting hTERT promoter regulation for diagnosis and treatment of human cancers. Cancer Sci. 2008;99(8):1528-1538. doi:10. 1111/j.1349-7006.2008.00878.x

145. Pendino F, Tarkanyi I, Dudognon C, et al. Telomeres and telomerase: pharmacological targets for new anticancer strategies? Curr Cancer Drug Targets. 2006;6(2):147-180. doi:10.2174/156 800906776056482

146. Guilleret I, Yan P, Grange F, Braunschweig R, Bosman FT, Benhattar J. Hypermethylation of the human telomerase catalytic subunit (hTERT) gene correlates with telomerase activity. Int J Cancer. 2002;101(4):335-341. doi:10.1002/ijc.10593

147. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194-1217. doi:10.1016/j.cell.2013.05.039

148. Tran H, Brunet A, Grenier JM, et al. DNA repair pathway stimulated by the forkhead transcription factor FOXO3a through the Gadd45 protein. Science. 2002;296(5567):530-534. doi:10. 1126/science.1068712

149. Calnan DR, Brunet A. The FoxO code. Oncogene. 2008;27(16):2276-2288. doi:10.1038/ onc.2008.21

150. Blasco MA. Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet. 2005;6(8):611-622. doi:10.1038/nrg1656

151. Greer EL, Brunet A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene. 2005;24(50):7410-7425. doi:10.1038/sj.onc.1209086

152. Webb AE, Brunet A. FOXO transcription factors: key regulators of cellular quality control. Trends Biochem Sci. 2014;39(4):159-169. doi:10. 1016/j.tibs.2014.02.003

153. Loffredo FS, Steinhauser ML, Jay SM, et al. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell. 2013;153(4):828-839. doi:10.1016/j.cell.2013.04.015

154. Sinha M, Jang YC, Oh J, et al. Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science. 2014;344(6184): 649-652. doi:10.1126/science.1251152

155. Egerman MA, Cadena SM, Gilbert JA, et al. GDF11 increases with age and inhibits skeletal muscle regeneration. Cell Metab. 2015;22(1):164-174. doi:10.1016/j.cmet.2015.05.010

156. Katsimpardi L, Litterman NK, Schein PA, et al. Vascular and neurogenic rejuvenation of the aging mouse brain by young systemic factors. Science. 2014;344(6184):630-634. doi:10.1126/science.1251141

157. Ma Y, Liu Y, Han F, et al. Growth differentiation factor 11: a "rejuvenation factor" involved in regulation of age-related diseases? Aging (Albany NY). 2021;13(8):12258-12272. doi: 10.18632/aging.202881

158. Poggioli T, Vber A, Bhatt R, et al. Circulating growth differentiation factor 11/8 levels decline with age. Circ Res. 2016;118(1):29-37. doi:10.1161 /CIRCRESAHA.115.307521

159. Walker RG, Poggioli T, Katsimpardi L, et al. Biochemistry and biology of GDF11 and myostatin: similarities, differences, and questions for future investigation. Circ Res. 2016;118(7):1125-1142. doi:10.1161/CIRCRESAHA.116.308391

160. Schafer MJ, Atkinson EJ, Vanderboom PM, et al. Quantification of GDF11 and myostatin in human aging and cardiovascular disease. Cell Metab. 2016;23(6):1207-1215. doi:10.1016/j.cmet.2016.05.023

161. Harper SC, Brber A, Shraer B, et al. Is growth differentiation factor 11 a realistic therapeutic for aging-dependent muscle defects? Circ Res. 2016; 118(7):1143-1150. doi:10.1161/CIRCRESAHA.116.307962

162. Matsumoto M, Han S, Kitamura T, Accili D. Dual role of transcription factor FoxO1 in controlling hepatic insulin sensitivity and lipid metabolism. J Clin Invest. 2006;116(9):2464-2472. doi:10.1172/JCI27047

163. Dong XC, Copps KD, Guo S, et al. Inactivation of hepatic Foxo1 by insulin signaling is required for adaptive nutrient homeostasis and endocrine growth regulation. Cell Metab. 2008;8(1):65-76. doi:10.1016/j.cmet.2008.06.006

164. Wolfrum C, Asilmaz E, Luca E, Friedman JM, Stoffel M. Foxa2 regulates lipid metabolism and ketogenesis in the liver during fasting and in diabetes. Nature. 2004;432(7020):1027-1032. doi: 10.1038/nature03047

165. Lee CS, Friedman JR, Fulmer JT, Kaestner KH. The initiation of liver development is dependent on Foxa transcription factors. Nature. 2005;435(7044): 944-947. doi:10.1038/nature03649

166. Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol. 2003;4(4):330-336. doi:10.1038/ni904

167. Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 20 08;133(5):775-787. doi:10.1016/j.cell.2008.05.009

168. Carlberg C, Campbell MJ. Vitamin D receptor signaling mechanisms: integrated actions of a well-defined transcription factor. Steroids. 2013;78(2):1 27-136. doi:10.1016/j.steroids.2012.10.019

169. Chang HC, Guarente L. SIRT1 and other sirtuins in metabolism. Trends Endocrinol Metab. 2014;25 (3):138-145. doi:10.1016/j.tem.2013.12.001

170. Bass J, Takahashi JS. Circadian integration of metabolism and energetics. Science. 2010;330(600 9):1349-1354. doi:10.1126/science.1195027

171. Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R. A C. elegans mutant that lives twice as long as wild type. Nature. 1993;366(6454):461-464. doi:10.1038/366461a0

172. Josefowicz SZ, Lu LF, Rudensky AY. Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol. 2012;30:531-564. doi:10.1146 /annurev.immunol.25.022106.141623

173. Eijkelenboom A, Burgering BM. FOXOs: signalling integrators for homeostasis maintenance. Nat Rev Mol Cell Biol. 2013;14(2):83-97. doi:10.10 38/nrm3507

174. Kops GJ, Dansen TB, Polderman PE, et al. Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature. 2002; 419(6904):316-321. doi:10.1038/nature01036

175. Hanna J, Saha K, Pando B, et al. Direct cell reprogramming is a stochastic process amenable to acceleration. Nature. 2009;462(7273):595-601. doi:10.1038/nature08592

176. Sakaguchi S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol. 2004;22:531-562. doi:10.1146/annu rev.immunol.21.120601.141122

177. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663-676. doi:10.1016/j.cell.2006.07.024

178. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;13 1(5):861-872. doi:10.1016/j.cell.2007.11.019

179. Alemán CL, Más R, Hernández C, et al. A 12-month study of policosanol oral toxicity in Sprague Dawley rats. Toxicol Lett. 1994;70(1):77-87. doi:10. 1016/0378-4274(94)90147-3

180. Alemán CL, Más Ferreiro R, Noa Puig M, et al. Carcinogenicity of policosanol in Sprague-Dawley rats: a 24-month study. Teratog Carcinog Mutagen. 1994;14(5):239-249. doi:10.1002/tcm.1770140505