The Oncoming Hydrogen Era and The New Paradigm of Cancer and Neurodegenerative Diseases Based on the Hydrogen Ion Dynamics on Cellular Homeostasis and Metabolism - from Etiopathogenesis to Treatment

Main Article Content

Salvador Harguindey, MD, PhD Stephan J. Reshkin, PhD Jesús Devesa, MD, PhD Julián Polo Orozco, PhD Jose Luis Arranz, MD, PhD Khalid O. Alfarouk, PhD

Abstract

This brief review addresses cancer and human neurodegenerative diseases (HNDDs) from a unified perspective, entirely different from that of current medicine, oncology, neurology, and neuro-oncology. It is based on the classical concepts of homeostasis and allostasis of Walter Cannon and Hans Selye, as well as the extraordinary discoveries of Otto Warburg in the field of cancer biochemistry. Drawing on numerous publications from our group and thousands of other recent high-impact publications, the main objective of this article is to summarize and update what is already known as "The New Anticancer Paradigm." Recently, this perspective on cancer, centered on altered pH, or H+ dynamics as underlying all the various cancer stages from initiation to metastasis to therapy, has been broadened to include the study of etiology, pathogenesis, and treatment of HNDDs under the same comprehensive and unified approach. At the same time, another positive effect of this conceptualization is to introduce and inaugurate the novel interdisciplinary concept of “The Approaching Hydrogen Age” or “A New Hydrogen Era”.

Keywords: pH abnormalities in cancer etiology, Warburg effect today, Distinctive features of cancer, Therapeutic implications of pH-dependent homeostasis and allostasis, New anticancer paradigm

Article Details

How to Cite
HARGUINDEY, Salvador et al. The Oncoming Hydrogen Era and The New Paradigm of Cancer and Neurodegenerative Diseases Based on the Hydrogen Ion Dynamics on Cellular Homeostasis and Metabolism - from Etiopathogenesis to Treatment. Medical Research Archives, [S.l.], v. 14, n. 1, feb. 2026. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/7161>. Date accessed: 15 feb. 2026. doi: https://doi.org/10.18103/mra.v14i1.7161.
Section
Review Articles

References

1. Warburg, O. On the Origin of Cancer Cells. Science 1956, 123, 309–314, doi:10.1126/science.123.3191.309.
2. Otto Warburg - Lectures | Lindau Mediatheque Available online: https://mediatheque.lindau-nobel.org/recordings/31517/on-the-primary-causes-and-on-the-secondary-causes-of-cancer-german-presentation-1966 (accessed on 25 December 2025).
3. Burk, D.; Winzler, R.J. The Biochemistry of Malignant Tissue. Annu Rev Biochem 1944, 13, 487–532, doi:10.1146/ANNUREV.BI.13.070144.002415.
4. Rich, I.N.; Worthington-White, D.; Garden, O.A.; Musk, P. Apoptosis of Leukemic Cells Accompanies Reduction in Intracellular PH after Targeted Inhibition of the Na(+)/H(+) Exchanger. Blood 2000, 95, 1427–1434.
5. Alfarouk, K.O.; Verduzco, D.; Rauch, C.; Muddathir, A.K.; Adil, H.H.B.; Elhassan, G.O.; Ibrahim, M.E.; David Polo Orozco, J.; Cardone, R.A.; Reshkin, S.J.; et al. Glycolysis, Tumor Metabolism, Cancer Growth and Dissemination. A New PH-Based Etiopathogenic Perspective and Therapeutic Approach to an Old Cancer Question. Oncoscience 2014, 1, 777–802, doi:10.18632/oncoscience.109.
6. Weinhouse, S.; Warburg, O. On Respiratory Impairment in Cancer Cells. Science 1956, 124, 269–270, doi:10.1126/science.124.3215.267.
7. DeBerardinis, R.J.; Chandel, N.S. We Need to Talk about the Warburg Effect. Nat Metab 2020, 2, 127–129, doi:10.1038/S42255-020-0172-2.
8. Gevers, W.; Dowle, E. The effect of pH on glycolysis in vitro. Clin Sci 1963, 25, 343–349.
9. Ui, M. A Role of Phosphofructokinase in PH-Dependent Regulation of Glycolysis. Biochim Biophys Acta 1966, 124, 310–322, doi:10.1016/0304-4165(66)90194-2.
10. Lowenstein, J.M.; Chance, B. The Effect of Hydrogen Ions on the Control of Mitochondrial Respiration. J Biol Chem 1968, 243, 3940–3946.
11. Halperin, M.L.; Connors, H.P.; Relman, A.S.; Karnovsky, M.L. Factors That Control the Effect of PH on Glycolysis in Leukocytes. J Biol Chem 1969, 244, 384–390.
12. Wilhelm, G.; Schulz, J.; Hofmann, E. pH-Dependence of Aerobic Glycolysis in Ehrlich Ascites Tumour Cells. FEBS Lett 1971, 17, 158–162.
13. Relman, A.S. Metabolic Consequences of Acid-Base Disorders. Kidney Int 1972, 1, 347–359, doi:10.1038/ki.1972.46.
14. Burr, M.J. The Relationship between pH and Aerobic Glycolysis in Human and Canine Erythrocytes. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 1972, 41, 687–694, doi:10.1016/0305-0491(72)90081-8.
15. Eagle, H. Some Effects of Environmental pH on Cellular Metabolism and Function. In Control of Proliferation in Animal Cells: Cold Spring Harbor Conference on Cell Proliferation. Volume 1; Control of Proliferation in Animal Cells: New York, 1974; pp. 1–11.
16. Rubin, H.; Fodge, D. Interrelationships of Glycolysis, Sugar Transport and the Initiation of DNA Synthesis in Chick Embryo Cells. In Control of Proliferation in Animal Cells, Volume 1; Cold Spring Harbor Laboratory, 1974; pp. 801–816.
17. Kaminskas, E. The PH-Dependence of Sugar-Transport and Glycolysis in Cultured Ehrlich Ascites-Tumour Cells. Biochem J 1978, 174, 453–459.
18. L’Allemain, G.; Franchi, A.; Cragoe, E.; Pouysségur, J. Blockade of the Na+/H+ Antiport Abolishes Growth Factor-Induced DNA Synthesis in Fibroblasts. Structure-Activity Relationships in the Amiloride Series. J Biol Chem 1984, 259, 4313–4319.
19. Paris, S.; Pouysségur, J. Growth Factors Activate the Na+/H+ Antiporter in Quiescent Fibroblasts by Increasing Its Affinity for Intracellular H+. J Biol Chem 1984, 259, 10989–10994.
20. Moolenaar, W.H.; Tertoolen, L.G.J.; De Laat, S.W. Phorbol Ester and Diacylglycerol Mimic Growth Factors in Raising Cytoplasmic PH. Nature 1984, 312, 371–374, doi:10.1038/312371A0.
21. Chambard, J.C.; Pouyssegur, J. Intracellular pH Controls Growth Factor-Induced Ribosomal Protein S6 Phosphorylation and Protein Synthesis in the G0→G1 Transition of Fibroblasts. Exp Cell Res 1986, 164, 282–294, doi:10.1016/0014-4827(86)90029-7.
22. Hagag, N.; Lacal, J.C.; Graber, M.; Aaronson, S.; Viola, M. V Microinjection of Ras P21 Induces a Rapid Rise in Intracellular pH. Mol Cell Biol 1987, 7, 1984–1988, doi: 10.1128/MCB.7.5.1984.Updated.
23. Doppler, W.; Jaggi, R.; Groner, B. Induction of V-Mos and Activated Ha-Ras Oncogene Expression in Quiescent NIH 3T3 Cells Causes Intracellular Alkalinisation and Cell-Cycle Progression. Gene 1987, 54, 147–153, doi:10.1016/0378-1119(87)90357-X.
24. Maly, K.; Uberall, F.; Loferer, H.; Doppler, W.; Oberhuber, H.; Groner, B.; Grunicke, H.H. Ha-Ras Activates the Na+/H+ Antiporter by a Protein Kinase C-Independent Mechanism. J Biol Chem 1989, 264, 11839–11842.
25. Maly, K.; Hochleitner, B.; Überall, F.; Loferer, H.; Oberhuber, H.; Doppler, W.; Grunicke, H. Mechanism and Biological Significance of the Ha-Ras-Induced Activation of the Na+/H+-Antiporter. Adv Enzyme Regul 1990, 30, 63–74, doi:10.1016/0065-2571(90)90009-Q.
26. Novikova, I.Y.; Muravyeva, O. V.; Cragoe, E.J.; Margolis, L.B. Study of Fibroblast Spreading: PH Dependence, Involvement of the Na+/H+-Antiporter and PKC. Biochim Biophys Acta 1993, 1178, 267–272, doi:10.1016/0167-4889(93)90203-2.
27. Chiche, J.; Fur, Y. Le; Vilmen, C.; Frassineti, F.; Daniel, L.; Halestrap, A.P.; Cozzone, P.J.; Pouysségur, J.; Lutz, N.W. In Vivo PH in Metabolic-Defective Ras-Transformed Fibroblast Tumors: Key Role of the Monocarboxylate Transporter, MCT4, for Inducing an Alkaline Intracellular PH. Int J Cancer 2012, 130, 1511–1520, doi:10.1002/IJC.26125.
28. Harguindey, S.; Stanciu, D.; Devesa, J.; Alfarouk, K.; Cardone, R.A.; Polo Orozco, J.D.; Devesa, P.; Rauch, C.; Orive, G.; Anitua, E.; et al. Cellular Acidification as a New Approach to Cancer Treatment and to the Understanding and Therapeutics of Neurodegenerative Diseases. Semin Cancer Biol 2017, 43, 157–179, doi: 10.1016/j.semcancer.2017.02.003.
29. Harguindey, S.; Orozco, J.P.; Alfarouk, K.O.; Devesa, J. Hydrogen Ion Dynamics of Cancer and a New Molecular, Biochemical and Metabolic Approach to the Etiopathogenesis and Treatment of Brain Malignancies. Int J Mol Sci 2019, 20.
30. Koltai, T.; Harguindey, S.; Reshkin, S. An Innovative Approach to Understanding and Treating Cancer: Targeting pH; Elsevier: Amsterdam, 2020; ISBN 9780128190593.
31. Anwar, S.; Shamsi, A.; Mohammad, T.; Islam, A.; Hassan, M.I. Targeting Pyruvate Dehydrogenase Kinase Signaling in the Development of Effective Cancer Therapy. Biochim Biophys Acta Rev Cancer 2021, 1876, doi: 10.1016/J.BBCAN.2021.188568.
32. Harguindey, S.; Alfarouk, K.; Orozco, J.P.; Reshkin, S.J.; Devesa, J. Hydrogen Ion Dynamics as the Fundamental Link between Neurodegenerative Diseases and Cancer: Its Application to the Therapeutics of Neurodegenerative Diseases with Special Emphasis on Multiple Sclerosis. Int J Mol Sci 2022, 23, doi:10.3390/IJMS23052454.
33. Che, X.-F.F.; Zheng, C.-L.L.; Akiyama, S.-I.I.; Tomoda, A. 2-Aminophenoxazine-3-One and 2-Amino-4,4α-Dihydro-4α,7-Dimethyl-3H-Phenoxazine-3-One Cause Cellular Apoptosis by Reducing Higher Intracellular pH in Cancer Cells. Proc Jpn Acad Ser B Phys Biol Sci 2011, 87, 199–213, doi:10.2183/PJAB.87.199.
34. Nagata, H.; Che, X.-F.F.; Miyazawa, K.; Tomoda, A.; Konishi, M.; Ubukata, H.; Tabuchi, T. Rapid Decrease of Intracellular pH Associated with Inhibition of Na+/H+ Exchanger Precedes Apoptotic Events in the MNK45 and MNK74 Gastric Cancer Cell Lines Treated with 2-Aminophenoxazine-3-One. Oncol Rep 2011, 25, 341–346, doi:10.3892/or.2010.1082.
35. Quach, C.H.T.; Jung, K.-H.; Lee, J.H.; Park, J.W.; Moon, S.H.; Cho, Y.S.; Choe, Y.S.; Lee, K.-H. Mild Alkalization Acutely Triggers the Warburg Effect by Enhancing Hexokinase Activity via Voltage-Dependent Anion Channel Binding. PLoS One 2016, 11, e0159529, doi: 10.1371/journal.pone.0159529.
36. Russell, S.; Xu, L.; Kam, Y.; Abrahams, D.; Ordway, B.; Lopez, A.S.; Bui, M.M.; Johnson, J.; Epstein, T.; Ruiz, E.; et al. Proton Export Upregulates Aerobic Glycolysis. BMC Biol 2022, 20, doi:10.1186/S12915-022-01340-0.
37. Harguindey, S.S.; Kolbeck, R.C.; Bransome, E.D. Letter: Ureterosigmoidostomy and Cancer: New Observations. Ann Intern Med 1975, 83, 833, doi:10.7326/0003-4819-83-6-833_1.
38. Harguindey, S.; Kolbeck, R. Cancer - A Generalization. Am Lab 1972, 71–73.
39. Harguindey, S.; Speir, W.A.; Kolbeck, R.C.; Bransome, E.D. Alkalotic Disequilibrium in Patients with Solid Tumors: Rediscovery of an Old Finding. European Journal of Cancer 1977, 13, 793–800, doi:10.1016/0014-2964(77)90132-3.
40. Harguindey, S.; Henderson, E.S.; Naeher, C. Effects of Systemic Acidification of Mice with Sarcoma 180. Cancer Res 1979, 39, 4364–4371.
41. Harguindey, S. Hydrogen Ion Dynamics and Cancer: An Appraisal. Med Pediatr Oncol 1982, 10, 217–236, doi:10.1002/MPO.2950100302.
42. Perona, R.; Portillo, F.; Giraldez, F.; Serrano, R. Transformation and PH Homeostasis of Fibroblasts Expressing Yeast H(+)-ATPase Containing Site-Directed Mutations. Mol Cell Biol 1990, 10, 4110–4115, doi:10.1128/mcb.10.8.4110-4115.1990.
43. Reshkin, S.J.; Bellizzi, A.; Caldeira, S.; Albarani, V.; Malanchi, I.; Poignee, M.; Alunni-Fabbroni, M.; Casavola, V.; Tommasino, M. Na+/H+ Exchanger-Dependent Intracellular Alkalinization Is an Early Event in Malignant Transformation and Plays an Essential Role in the Development of Subsequent Transformation-Associated Phenotypes. FASEB J 2000, 14, 2185–2197, doi: 10.1096/fj.00-0029com.
44. Cardone, R.A.; Casavola, V.; Reshkin, S.J. The Role of Disturbed pH Dynamics and the Na+/H+ Exchanger in Metastasis. Nat Rev Cancer 2005, 5, 786–795, doi:10.1038/NRC1713.
45. Harguindey, S.; Orive, G.; Luis Pedraz, J.; Paradiso, A.; Reshkin, S.J. The Role of pH Dynamics and the Na+/H+ Antiporter in the Etiopathogenesis and Treatment of Cancer. Two Faces of the Same Coin--One Single Nature. Biochim Biophys Acta 2005, 1756, 1–24, doi: 10.1016/j.bbcan.2005.06.004.
46. Huber, V.; De Milito, A.; Harguindey, S.; Reshkin, S.J.; Wahl, M.L.; Rauch, C.; Chiesi, A.; Pouysségur, J.; Gatenby, R.A.; Rivoltini, L.; et al. Proton Dynamics in Cancer. J Transl Med 2010, 8, 57, doi:10.1186/1479-5876-8-57.
47. Grillo-Hill, B.K.; Choi, C.; Jimenez-Vidal, M.; Barber, D.L. Increased H+ Efflux Is Sufficient to Induce Dysplasia and Necessary for Viability with Oncogene Expression. Elife 2015, 4, doi:10.7554/eLife.03270.
48. Amith, S.R.; Wilkinson, J.M.; Fliegel, L. Assessing Na+/H+ Exchange and Cell Effector Functionality in Metastatic Breast Cancer. Biochim Open 2016, 2, 16–23, doi: 10.1016/J.BIOPEN.2016.01.001.
49. Harguindey, S.; Reshkin, S.J. “The New pH-Centric Anticancer Paradigm in Oncology and Medicine” ; SCB, 2017. Semin Cancer Biol 2017, 43, 1–4, doi: 10.1016/j.semcancer.2017.02.008.
50. Liu, Y.; White, K.A.; Barber, D.L. Intracellular pH Regulates Cancer and Stem Cell Behaviors: A Protein Dynamics Perspective. Front Oncol 2020, 10, doi:10.3389/fonc.2020.01401.
51. Harguindey, S.; Alfarouk, K.; Polo Orozco, J.; Fais, S.; Devesa, J. Towards an Integral Therapeutic Protocol for Breast Cancer Based upon the New H+-Centered Anticancer Paradigm of the Late Post-Warburg Era. Int J Mol Sci 2020, 21, 7475, doi:10.3390/ijms21207475.
52. Harguindey; Alfarouk; Orozco; Hardonniere; Stanciu; Fais; Devesa A New and Integral Approach to the Etiopathogenesis and Treatment of Breast Cancer Based upon Its Hydrogen Ion Dynamics. Int J Mol Sci 2020, 21, 1110, doi:10.3390/ijms21031110.
53. Alfarouk, K.O.; Ahmed, S.B.M.; Elliott, R.L.; Benoit, A.; Alqahtani, S.S.; Ibrahim, M.E.; Bashir, A.H.H.; Alhoufie, S.T.S.; Elhassan, G.O.; Wales, C.C.; et al. The Pentose Phosphate Pathway Dynamics in Cancer and Its Dependency on Intracellular PH. Metabolites 2020, 10, 285, doi:10.3390/metabo10070285.
54. Hanahan, D.; Weinberg, R.A. The Hallmarks of Cancer. Cell 2000, 100, 57–70.
55. Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The next Generation. Cell 2011, 144, 646–674, doi: 10.1016/j.cell.2011.02.013.
56. Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov 2022, 12, 31–46, doi:10.1158/2159-8290.CD-21-1059.
57. Kroemer, G.; Pouyssegur, J. Tumor Cell Metabolism: Cancer’s Achilles’ Heel. Cancer Cell 2008, 13, 472–482, doi: 10.1016/j.ccr.2008.05.005.
58. Webb, B.A.; Chimenti, M.; Jacobson, M.P.; Barber, D.L. Dysregulated pH: A Perfect Storm for Cancer Progression. Nat Rev Cancer 2011, 11, 671–677, doi:10.1038/NRC3110.
59. Reshkin, S.J.; Cardone, R.A.; Harguindey, S. Na+-H+ Exchanger, pH Regulation and Cancer. Recent Pat Anticancer Drug Discov 2013, 8, 85–99.
60. Reshkin, S.J.; Greco, M.R.; Cardone, R.A. Role of pHi, and Proton Transporters in Oncogene-Driven Neoplastic Transformation. Philos Trans R Soc Lond B Biol Sci 2014, 369, 20130100, doi:10.1098/rstb.2013.0100.
61. Giampazolias, E.; Tait, S.W.G. Mitochondria and the Hallmarks of Cancer. FEBS J 2016, 283, 803–814, doi:10.1111/FEBS.13603.
62. White, K.A.; Grillo-Hill, B.K.; Barber, D.L. Cancer Cell Behaviors Mediated by Dysregulated pH Dynamics at a Glance. J Cell Sci 2017, 130, 663–669, doi:10.1242/jcs.195297.
63. Zheng, T.; Jäättelä, M.; Liu, B. PH Gradient Reversal Fuels Cancer Progression. Int J Biochem Cell Biol 2020, 125, doi: 10.1016/J.BIOCEL.2020.105796.
64. Harguindey, S.; Arranz, J.L.; Wahl, M.L.; Orive, G.; Reshkin, S.J. Proton Transport Inhibitors as Potentially Selective Anticancer Drugs. Anticancer Res 2009, 29, 2127–2136, doi:29/6/2127 [pii].
65. Parks, S.K.; Chiche, J.; Pouysségur, J. Disrupting Proton Dynamics and Energy Metabolism for Cancer Therapy. Nat Rev Cancer 2013, 13, 611–623, doi:10.1038/nrc3579.
66. Huber, V.; Camisaschi, C.; Berzi, A.; Ferro, S.; Lugini, L.; Triulzi, T.; Tuccitto, A.; Tagliabue, E.; Castelli, C.; Rivoltini, L. Cancer Acidity: An Ultimate Frontier of Tumor Immune Escape and a Novel Target of Immunomodulation. Semin Cancer Biol 2017, 43, 74–89, doi: 10.1016/j.semcancer.2017.03.001.
67. Cappellesso, F.; Orban, M.P.; Shirgaonkar, N.; Berardi, E.; Serneels, J.; Neveu, M.A.; Di Molfetta, D.; Piccapane, F.; Caroppo, R.; Debellis, L.; et al. Targeting the Bicarbonate Transporter SLC4A4 Overcomes Immunosuppression and Immunotherapy Resistance in Pancreatic Cancer. Nat Cancer 2022, 3, 1464–1483, doi:10.1038/S43018-022-00470-2.
68. Hardonnière, K.; Huc, L.; Sergent, O.; Holme, J.A.; Lagadic-Gossmann, D. Environmental Carcinogenesis and pH Homeostasis: Not Only a Matter of Dysregulated Metabolism. Semin Cancer Biol 2017, 43, 49–65, doi: 10.1016/J.SEMCANCER.2017.01.001.
69. Aravena, C.; Beltrán, A.R.; Cornejo, M.; Torres, V.; Díaz, E.S.; Guzmán-Gutiérrez, E.; Pardo, F.; Leiva, A.; Sobrevia, L.; Ramírez, M.A. Potential Role of Sodium-Proton Exchangers in the Low Concentration Arsenic Trioxide-Increased Intracellular pH and Cell Proliferation. PLoS One 2012, 7, doi: 10.1371/JOURNAL.PONE.0051451.
70. Schwartz, L.; Buhler, L.; Icard, P.; Lincet, H.; Summa, G.M.; Steyaert, J.-M. Metabolic Cancer Treatment: Intermediate Results of a Clinical Study. Cancer Ther 2014, 10, 13–19.
71. Schwartz, L.; Seyfried, T.; Alfarouk, K.O.; Da Veiga Moreira, J.; Fais, S. Out of Warburg Effect: An Effective Cancer Treatment Targeting the Tumor Specific Metabolism and Dysregulated pH. Semin Cancer Biol 2017, 43, 134–138, doi: 10.1016/j.semcancer.2017.01.005.
72. Hu, Q.; Hu, J.; Chen, C.; Wang, Y.; Zhang, Y.; Wan, J.; Jing, O.; Yi, H.; Wang, S.; Huang, W.; et al. Propranolol Suppresses Bladder Cancer by Manipulating Intracellular pH via NHE1. Transl Androl Urol 2022, 11, 1083–1095, doi:10.21037/TAU-22-113/COIF).
73. Fernandez-Gil, B.I.; Otamendi-Lopez, A.; Bechtle, A.; Vazquez-Ramos, C.A.; Qosja, N.; Suarez-Meade, P.; Sarabia-Estrada, R.; Jentoft, M.E.; Guerrero-Cázares, H.; Escames, G.; et al. Melatonin Treatment Triggers Metabolic and Intracellular pH Imbalance in Glioblastoma. Cells 2022, 11, doi:10.3390/CELLS11213467.
74. Sanchez-Sanchez, A.M.; Antolin, I.; Puente-Moncada, N.; Suarez, S.; Gomez-Lobo, M.; Rodriguez, C.; Martin, V. Melatonin Cytotoxicity Is Associated to Warburg Effect Inhibition in Ewing Sarcoma Cells. PLoS One 2015, 10, doi: 10.1371/JOURNAL.PONE.0135420.
75. Uchiyama, A.A.T.; Silva, P.A.I.A.; Lopes, M.S.M.; Yen, C.T.; Ricardo, E.D.; Mutão, T.; Pimenta, J.R.; Machado, L.M.; Shimba, D.S.; Peixoto, R.D. Proton Pump Inhibitors and Oncologic Treatment Efficacy: A Practical Review of the Literature for Oncologists. Curr Oncol 2021, 28, 783–799, doi:10.3390/CURRONCOL28010076.
76. Raudenska, M.; Balvan, J.; Fojtu, M.; Gumulec, J.; Masarik, M. Unexpected Therapeutic Effects of Cisplatin. Metallomics 2019, 11, 1182–1199, doi:10.1039/C9MT00049F.
77. Keizer, H.G.; Joenje, H. Increased Cytosolic pH in Multidrug-Resistant Human Lung Tumor Cells: Effect of Verapamil. J Natl Cancer Inst 1989, 81, 706–709, doi:10.1093/JNCI/81.9.706.
78. Makovec, T. Cisplatin and beyond: Molecular Mechanisms of Action and Drug Resistance Development in Cancer Chemotherapy. Radiol Oncol 2019, 53, 148–158, doi:10.2478/RAON-2019-0018.
79. Dasari, S.; Bernard Tchounwou, P. Cisplatin in Cancer Therapy: Molecular Mechanisms of Action. Eur J Pharmacol 2014, 740, 364–378, doi: 10.1016/J.EJPHAR.2014.07.025.
80. Hamaguchi, R.; Isowa, M.; Narui, R.; Morikawa, H.; Wada, H. Clinical Review of Alkalization Therapy in Cancer Treatment. Front Oncol 2022, 12, doi:10.3389/FONC.2022.1003588.
81. Demidov, L. V.; Manziuk, L. V.; Kharkevitch, G.Y.; Pirogova, N.A.; Artamonova, E. V. Adjuvant Fermented Wheat Germ Extract (Avemar) Nutraceutical Improves Survival of High-Risk Skin Melanoma Patients: A Randomized, Pilot, Phase II Clinical Study with a 7-Year Follow-Up. Cancer Biother Radiopharm 2008, 23, 477–482, doi:10.1089/CBR.2008.0486.
82. Bencze, G.; Bencze, S.; Rivera, K.D.; Watson, J.D.; Orfi, L.; Tonks, N.K.; Pappin, D.J. Mito-Oncology Agent: Fermented Extract Suppresses the Warburg Effect, Restores Oxidative Mitochondrial Activity, and Inhibits in Vivo Tumor Growth. Sci Rep 2020, 10, 14174, doi:10.1038/s41598-020-71118-3.
83. Weitzen, R.; Epstein, N.; Oberman, B.; Shevetz, R.; Hidvegi, M.; Berger, R. Fermented Wheat Germ Extract (FWGE) as a Treatment Additive for Castration-Resistant Prostate Cancer: A Pilot Clinical Trial. Nutr Cancer 2021, 1–9, doi:10.1080/01635581.2021.1952457.
84. Boros, L.G.; Nichelatti, M.; Shoenfeld, Y. Fermented Wheat Germ Extract (Avemar) in the Treatment of Cancer and Autoimmune Diseases. Ann N Y Acad Sci 2005, 1051, 529–542, doi:10.1196/annals.1361.097.
85. Garami, M.; Schuler, D.; Babosa, M.; Borgulya, G.; Hauser, P.; Müller, J.; Paksy, A.; Szabó, E.; Hidvégi, M.; Fekete, G. Fermented Wheat Germ Extract Reduces Chemotherapy-Induced Febrile Neutropenia in Pediatric Cancer Patients. J Pediatr Hematol Oncol 2004, 26, 631–635, doi: 10.1097/01.mph.0000141897.04996.21.
86. Traxler, L.; Herdy, J.R.; Stefanoni, D.; Eichhorner, S.; Pelucchi, S.; Szücs, A.; Santagostino, A.; Kim, Y.; Agarwal, R.K.; Schlachetzki, J.C.M.; et al. Warburg-like Metabolic Transformation Underlies Neuronal Degeneration in Sporadic Alzheimer’s Disease. Cell Metab 2022, 34, 1248-1263.e6, doi: 10.1016/J.CMET.2022.07.014.
87. Pouysségur, J.; Marchiq, I.; Parks, S.K.; Durivault, J.; Ždralević, M.; Vucetic, M. ‘Warburg Effect’ Controls Tumor Growth, Bacterial, Viral Infections and Immunity – Genetic Deconstruction and Therapeutic Perspectives. Semin Cancer Biol 2022, 86, 334–346, doi: 10.1016/j.semcancer.2022.07.004.
88. Chen, C.; Wang, X.; Yang, T.; Yuan, X.; Liang, N.; Yang, Y.; Yang, X.; Pang, Y.; Zhao, Y.; Li, C. The PH Perspective of Cancer: From Warburg’s Misconception to Therapeutic Targeting of PH Regulating Proteins. Crit Rev Oncol Hematol 2026, 217, 105051, doi: 10.1016/J.CRITREVONC.2025.105051.