Toward Precision Oculoplastics: Federated Data, Artificial Intelligence, and the Path to Equitable Therapeutic Discovery
Main Article Content
Abstract
Oculoplastic and orbital disorders are rapidly entering a new era of precision medicine, driven by advances in genomics, multi-omic profiling, and artificial intelligence (AI). However, the evidence base supporting these innovations remains overwhelmingly Eurocentric: more than 80% of all genome-wide association study (GWAS) participants globally are of European ancestry, and pivotal trials of teprotumumab, the first targeted biologic for thyroid eye disease (TED), enrolled over 85% European-descended participants. This imbalance constrains understanding of ancestry-specific therapeutic responses, limits the transferability of polygenic and pharmacogenomic models, and risks perpetuating structural bias in emerging AI systems used for diagnostic and surgical decision-making. The high cost of teprotumumab (> USD 200,000 per treatment course) further underscores the need for equitable, predictive stratification.
This article outlines how federated learning (FL) and harmonized multi-omic data infrastructures can close these gaps. We highlight the EXAM study as a real-world demonstration of FL’s ability to integrate multi-institutional data without transferring sensitive patient information, achieving superior predictive performance while preserving privacy. Building on these principles, we introduce GeneVault Harmony, a federated harmonization and benchmarking framework that integrates genomic, transcriptomic, imaging, and clinical data while maintaining data sovereignty and aligning with GA4GH and WHO standards. By enabling bias quantification, diversity simulation, and cross-institutional interoperability, Harmony provides a scalable foundation for equitable oculoplastic genomics. We conclude by proposing a pathway toward inclusive precision therapeutics in oculoplastics, including multi-regional genomic consortia and federated, multi-omic AI pipelines spanning the Middle East, Africa, South Asia, and Latin America. Integrating globally representative data into future genomic and pharmacogenomic discovery is essential to ensure that precision ophthalmology evolves in a manner that is scientifically robust, clinically equitable, and globally relevant.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Fatumo S, Chikowore T, Choudhury A, Ayub M, Martin AR, Kuchenbaecker K. A roadmap to increase diversity in genomic studies. Nat Med. 2022;28(2):243-250. doi:10.1038/s41591-021-01672-4
3. Smith TJ, Kahaly GJ, Ezra DG, et al. Teprotumumab for Thyroid-Associated Ophthalmopathy. N Engl J Med. 2017;376(18):1748-1761. doi:10.1056/NEJMoa1614949
4. Sanfilippo PG, Hewitt AW, Hammond CJ, Mackey DA. The Heritability of Ocular Traits. Surv Ophthalmol. 2010;55(6):561-583. doi:10.1016/j.survophthal.2010.07.003
5. Han X, Gharahkhani P, Hamel AR, et al. Large-scale multitrait genome-wide association analyses identify hundreds of glaucoma risk loci. Nat Genet. 2023;55(7):1116-1125. doi:10.1038/s41588-023-01428-5
6. Xue Z, Yuan J, Chen F, et al. Genome-wide association meta-analysis of 88,250 individuals highlights pleiotropic mechanisms of five ocular diseases in UK Biobank. eBioMedicine. 2022;82:104161. doi:10.1016/j.ebiom.2022.104161
7. Malhotra NA, Greenlee TE, Iyer AI, Conti TF, Chen AX, Singh RP. Racial, Ethnic, and Insurance-Based Disparities Upon Initiation of Anti–Vascular Endothelial Growth Factor Therapy for Diabetic Macular Edema in the US. Ophthalmology. 2021;128(10):1438-1447. doi:10.1016/j.ophtha.2021.03.010
8. Emanuele N, Sacks J, Klein R, et al. Ethnicity, Race, and Baseline Retinopathy Correlates in the Veterans Affairs Diabetes Trial. Diabetes Care. 2005;28(8):1954-1958. doi:10.2337/diacare.28.8.1954
9. Stein JD, Kim DS, Niziol LM, et al. Differences in Rates of Glaucoma among Asian Americans and Other Racial Groups, and among Various Asian Ethnic Groups. Ophthalmology. 2011;118(6):1031-1037. doi:10.1016/j.ophtha.2010.10.024
10. Han X, Gharahkhani P, Hamel AR, et al. Large-scale multitrait genome-wide association analyses identify hundreds of glaucoma risk loci. Nat Genet. 2023;55(7):1116-1125. doi:10.1038/s41588-023-01428-5
11. Demographic distributions of teprotumumab prescription for thyroid eye disease | IOVS | ARVO Journals. Accessed October 21, 2025. https://iovs.arvojournals.org/article.aspx?articleid=2804452
12. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants | Nature Genetics. Accessed October 21, 2025. https://www.nature.com/articles/ng.3448
13. New insights into craniofacial malformations - PMC. Accessed October 21, 2025. https://pmc.ncbi.nlm.nih.gov/articles/PMC4571997/
14. Elfatih A, Saad C, Mifsud B, Mbarek H. Analysis of 14,392 whole genomes reveals 3.5% of Qataris carry medically actionable variants. Eur J Hum Genet. 2024;32(11):1465-1473. doi:10.1038/s41431-024-01656-1
15. Nagai A, Hirata M, Kamatani Y, et al. Overview of the BioBank Japan Project: Study design and profile. J Epidemiol. 2017;27(3, Supplement):S2-S8. doi:10.1016/j.je.2016.12.005
16. The H3Africa Consortium, Matovu E, Bucheton B, et al. Enabling the genomic revolution in Africa. Science. 2014;344(6190):1346-1348. doi:10.1126/science.1251546
17. Martin AR, Kanai M, Kamatani Y, Okada Y, Neale BM, Daly MJ. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat Genet. 2019;51(4):584-591. doi:10.1038/s41588-019-0379-x
18. Duncan L, Shen H, Gelaye B, et al. Analysis of polygenic risk score usage and performance in diverse human populations. Nat Commun. 2019;10(1):3328. doi:10.1038/s41467-019-11112-0
19. Men CJ, Amarikwa L, Pham B, et al. Teprotumumab for the Treatment of Recalcitrant Thyroid Eye Disease. Ophthal Plast Reconstr Surg. 2024;40(3):276-285. doi:10.1097/IOP.0000000000002564
20. Teprotumumab for Thyroid-Associated Ophthalmopathy | New England Journal of Medicine. Accessed October 21, 2025. https://www.nejm.org/doi/10.1056/NEJMoa1614949
21. Zong Y, Qiu S, Yang M, et al. Teprotumumab for Thyroid Eye Disease: Mechanism, Clinical Efficacy, and Current Challenges. Antibodies Basel Switz. 2025;14(3):55. doi:10.3390/antib14030055
22. Tamhankar MA, Raza S, Brutsaert E, et al. The burden of illness in thyroid eye disease: current state of the evidence. Front Ophthalmol. 2025;5:1565762. doi:10.3389/fopht.2025.1565762
23. Rehm HL, Page AJH, Smith L, et al. GA4GH: International policies and standards for data sharing across genomic research and healthcare. Cell Genomics. 2021;1(2):100029. doi:10.1016/j.xgen.2021.100029
24. Rajkomar A, Hardt M, Howell MD, Corrado G, Chin MH. Ensuring Fairness in Machine Learning to Advance Health Equity. Ann Intern Med. 2018;169(12):866-872. doi:10.7326/M18-1990
25. Dayan I, Roth HR, Zhong A, et al. Federated learning for predicting clinical outcomes in patients with COVID-19. Nat Med. 2021;27(10):1735-1743. doi:10.1038/s41591-021-01506-3
26. Drainakis G, Katsaros KV, Pantazopoulos P, Sourlas V, Amditis A. Federated vs. Centralized Machine Learning under Privacy-elastic Users: A Comparative Analysis. In: 2020 IEEE 19th International Symposium on Network Computing and Applications (NCA). 2020:1-8. doi:10.1109/NCA51143.2020.9306745
27. Peterson C, Moore R, Hicks JL, et al. NGS Analysis Confirms Common TP53 and RB1 Mutations, and Suggests MYC Amplification in Ocular Adnexal Sebaceous Carcinomas. Int J Mol Sci. 2021;22(16):8454. doi:10.3390/ijms22168454
28. Peng Z, Wang Y, Wang Y, et al. Application of radiomics and machine learning in head and neck cancers. Int J Biol Sci. 2021;17(2):475-486. doi:10.7150/ijbs.55716
29. Sheller MJ, Edwards B, Reina GA, et al. Federated learning in medicine: facilitating multi-institutional collaborations without sharing patient data. Sci Rep. 2020;10(1):12598. doi:10.1038/s41598-020-69250-1
30. Guidance for human genome data collection, access, use and sharing. Accessed October 21, 2025. https://www.who.int/publications/i/item/9789240102149?utm_source=chatgpt.com
31. Martin AR, Kanai M, Kamatani Y, Okada Y, Neale BM, Daly MJ. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat Genet. 2019;51(4):584-591. doi:10.1038/s41588-019-0379-x
32. Kaissis GA, Makowski MR, Rückert D, Braren RF. Secure, privacy-preserving and federated machine learning in medical imaging. Nat Mach Intell. 2020;2(6):305-311. doi:10.1038/s42256-020-0186-1