Global deoxyribonucleic acid methylation and telomere length in patients with systemic metabolic disorders

Main Article Content

Olena V. Kolesnikova Anastasiia O. Radchenko Olga Ye. Zaprovalna Valentina Yu. Galchinskaya

Abstract

Background: Epigenetic mechanisms reflect biological ageing and cardiometabolic risk. In patients with systemic metabolic disorders (SMD), these processes are perturbed, yet joint dynamics of global 5-methylcytosine (5-mC) and telomere length remain insufficiently described.


Aims: To assess associations between 5-mC, telomere length and cardiometabolic profiles by SMD stage and over time.


Methods: We studied 78 SMD patients (median age 55.4 years; 56% men): stage 1 (n=59) and stage 2 (n=19). Global 5-mC was measured by enzyme-linked immunosorbent assay and telomere length by real-time quantitative polymerase chain reaction. 67 patients had a follow-up visit after a median of 63 weeks.


Results: Stage 2 patients showed higher body mass index, aspartate/alanine aminotransferases, alkaline phosphatase, glucose, triglycerides, very-low-density lipoprotein cholesterol, and lower high-density lipoprotein cholesterol (all p<0.05). Only trends toward hypermethylation and shorter telomere length were observed in stage 2. Within stage 1, 5-mC associated with hematocrit; telomere length associated with red blood cell count, platelet distribution width, and total cholesterol. Within stage 2, alkaline phosphatase inversely predicted 5-mC; telomere length was predicted by age, body weight, erythrocyte sedimentation rate, mean corpuscular hemoglobin concentration, alkaline phosphatase, creatinine, and uric acid (all p<0.05). Change in 5-mC related to baseline body mass index, mean corpuscular volume, glucose, red cell distribution width, mean platelet volume, creatinine, and low-density lipoprotein cholesterol; telomere length change related to baseline glucose, direct bilirubin, and albumin (all p<0.05).


Conclusions: Stage 2 SMD reflects greater metabolic burden with unfavorable 5-mC, telomere length trends. Cardiometabolic indices show independent links with 5-mC, telomere length, supporting composite biomarker strategies for ageing-risk monitoring in SMD.

Keywords: Systemic metabolic disorders, 5-methylcytosine, telomere length, cardiometabolic risk factors

Article Details

How to Cite
KOLESNIKOVA, Olena V. et al. Global deoxyribonucleic acid methylation and telomere length in patients with systemic metabolic disorders. Medical Research Archives, [S.l.], v. 13, n. 12, jan. 2026. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/7180>. Date accessed: 22 jan. 2026. doi: https://doi.org/10.18103/mra.v13i12.7180.
Section
Research Articles

References

1. Romeo S, Vidal-Puig A, Husain M, et al. Clinical staging to guide management of metabolic disorders and their sequelae: a European Atherosclerosis Society consensus statement. Eur Heart J. 2025 May 7;ehaf314. doi:10.1093/eurheartj/ehaf314

2. Wu N, Fu J. Association of biological age acceleration with mortality in adults with diabetes or prediabetes: a mediating role of physical activity. Aging Clin Exp Res. 2025 Oct 30;37(1):310. doi:10.1007/s40520-025-03204-3

3. He QJ, Li YF, Zhao LT, Lin CT, Yu CY, Wang D. Recent advances in age-related metabolic dysfunction-associated steatotic liver disease. World J Gastroenterol. 2024 Feb 21;30(7):652. doi:10.3748/wjg.v30.i7.652

4. Abugroun A, Shah SJ, Fitzmaurice G, et al. The association between accelerated biological aging and cardiovascular outcomes in older adults with hypertension. Am J Med. 2025 Mar 1;138(3):487-94. doi:10.1016/j.amjmed.2024.10.029

5. Xiang Q, Tian F, Xu J, Du X, Zhang S, Liu L. New insight into dyslipidemia-induced cellular senescence in atherosclerosis. Biol Rev Camb Philos Soc. 2022 Oct;97(5):1844-67. doi:10.1111/brv.12866

6. Kivimäki M, Frank P, Pentti J, et al. Obesity and risk of diseases associated with hallmarks of cellular ageing: a multicohort study. Lancet Healthy Longev. 2024 Jul 1;5(7):e454-63. doi:10.1016/S2666-7568(24)00087-4

7. Bernabeu E, McCartney DL, Gadd DA, et al. Refining epigenetic prediction of chronological and biological age. Genome Med. 2023 Feb 28;15(1):12. doi:10.1186/s13073-023-01161-y

8. Seale K, Horvath S, Teschendorff A, Eynon N, Voisin S. Making sense of the ageing methylome. Nat Rev Genet. 2022 Oct;23(10):585-605. doi:10.1038/s41576-022-00477-6

9. Liang R, Tang Q, Chen J, Zhu L. Epigenetic clocks: beyond biological age, using the past to predict the present and future. Aging Dis. 2024 Dec 13;16(6):3520. doi:10.14336/AD.2024.1495

10. Margiotti K, Monaco F, Fabiani M, Mesoraca A, Giorlandino C. Epigenetic clocks: in aging-related and complex diseases. Cytogenet Genome Res. 2023 Dec 28;163(5-6):247-56. doi:10.1159/000534561

11. Wu YL, Lin ZJ, Li CC, et al. Epigenetic regulation in metabolic diseases: mechanisms and advances in clinical study. Signal Transduct Target Ther. 2023 Mar 2;8(1):98. doi:10.1038/s41392-023-01333-7

12. Gavia-García G, Rosado-Pérez J, Arista-Ugalde TL, Aguiñiga-Sánchez I, Santiago-Osorio E, Mendoza-Núñez VM. Telomere length and oxidative stress and its relation with metabolic syndrome components in the aging. Biology (Basel). 2021 Mar 24;10(4):253. doi:10.3390/biology10040253

13. Henriques CM, Ferreira MG. Telomere length is an epigenetic trait – Implications for the use of telomerase-deficient organisms to model human disease. Dis Model Mech. 2024 Mar 1;17(3):dmm050581. doi:10.1242/dmm.050581

14. Carlund O, Norberg A, Osterman P, Landfors M, Degerman S, Hultdin M. DNA methylation variations and epigenetic aging in telomere biology disorders. Sci Rep. 2023 May 16;13(1):7955. doi:10.1038/s41598-023-34922-1

15. Dong Y, Huang Y, Gutin B, Raed A, Dong Y, Zhu H. Associations between global DNA methylation and telomere length in healthy adolescents. Sci Rep. 2017 Jun 23;7(1):4210. doi:10.1038/s41598-017-04493-z

16. Haupt S, Niedrist T, Sourij H, Schwarzinger S, Moser O. The impact of exercise on telomere length, DNA methylation and metabolic footprints. Cells. 2022 Jan 4;11(1):153. doi:10.3390/cells11010153

17. Kolesnikova OV, Radchenko AO, Zaprovalna OY. The association of clinical and biochemical indicators with the rate of aging in patients with arterial hypertension during wartime. Arter Hypertens. 2025;29:45-52. doi:10.5603/ah.102288

18. Levine ME, Lu AT, Quach A, et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY). 2018 Apr 17;10(4):573. doi:10.18632/aging.101414

19. Bortz J, Guariglia A, Klaric L, et al. Biological age estimation using circulating blood biomarkers. Commun Biol. 2023 Oct 26;6(1):1089. doi:10.1038/s42003-023-05456-z

20. Mostafavi Abdolmaleky H, Zhou JR. Gut microbiota dysbiosis, oxidative stress, inflammation, and epigenetic alterations in metabolic diseases. Antioxidants (Basel). 2024 Aug 14;13(8):985. doi:10.3390/antiox13080985

21. Rattan P, Penrice DD, Ahn JC, et al. Inverse association of telomere length with liver disease and mortality in the US population. Hepatol Commun. 2022 Feb;6(2):399-410. doi:10.1002/hep4.1803

22. Lyu L, He S, Zhang H, et al. TNFα mediates the interaction of telomeres and mitochondria induced by hyperglycemia: a rural community-based cross-sectional study. Oxid Med Cell Longev. 2020;2020:8235873. doi:10.1155/2020/8235873

23. Zhang A, Tang Z, Chang AC, et al. Leukocyte telomere length and risk of heart failure with preserved ejection fraction in high-risk Chinese patients with hypertension under 65 years. GeroScience. 2025 Oct 31:1-3. doi:10.1007/s11357-025-01979-x

24. Yin H, Pickering JG. Telomere length: implications for atherogenesis. Curr Atheroscler Rep. 2023 Mar;25(3):95-103. doi:10.1007/s11883-023-01082-6

25. Maleknia M, Ahmadirad N, Golab F, Katebi Y, Haj Mohamad Ebrahim Ketabforoush A. DNA methylation in cancer: epigenetic view of dietary and lifestyle factors. Epigenetics Insights. 2023 Sep;16:25168657231199893. doi:10.1177/25168657231199893

26. Van Der Spek A, Karamujić-Čomić H, Pool R, et al. Fat metabolism is associated with telomere length in six population-based studies. Hum Mol Genet. 2022 Apr 1;31(7):1159-70. doi:10.1093/hmg/ddab281

27. Lejawa M, Osadnik K, Osadnik T, Pawlas N. Association of metabolically healthy and unhealthy obesity phenotypes with oxidative stress parameters and telomere length in healthy young adult men: analysis of the MAGNETIC study. Antioxidants (Basel). 2021 Jan 11;10(1):93. doi:10.3390/antiox10010093

28. Tzounakas VL, Anastasiadi AT, Arvaniti VZ, et al. Supplementation with uric and ascorbic acid protects stored red blood cells through enhancement of non-enzymatic antioxidant activity and metabolic rewiring. Redox Biol. 2022 Nov 1;57:102477. doi:10.1016/j.redox.2022.102477

29. Copur S, Demiray A, Kanbay M. Uric acid in metabolic syndrome: does uric acid have a definitive role? Eur J Intern Med. 2022 Sep 1;103:4-12. doi:10.1016/j.ejim.2022.04.022

30. Allaire P, He J, Mayer J, et al. Genetic and clinical determinants of telomere length. Hum Genet Genom Adv. 2023 Jul 13;4(3):100201. doi:10.1016/j.xhgg.2023.100201

31. Marti A, de la Puente MF, Canudas S, et al. Effect of a 3-year lifestyle intervention on telomere length in participants from PREDIMED-Plus: a randomized trial. Clin Nutr. 2023 Sep 1;42(9):1581-7. doi:10.1016/j.clnu.2023.06.03