SOX Transcription Factor Network Modulation by Metadichol: A Novel Paradigm for Regenerative and Precision Medicine

Main Article Content

P. R. Raghavan

Abstract

Background: The SRY-related HMG-box (SOX) transcription factor family comprises 20 master regulators governing cell fate determination, stem cell pluripotency, and lineage-specific differentiation—processes fundamental to regenerative medicine. Notably, SRY-related HMG-box 2 (SOX2 ) serves as one of the four Yamanaka factors essential for induced pluripotent stem cell (iPSC) generation, while SOX17 directs definitive endoderm specification critical for hepatocyte and pancreatic β-cell derivation. Despite their therapeutic promise, pharmacological approaches capable of coordinately modulating multiple SRY-related HMG-box genes(SOX) for in vivo cellular reprogramming remain elusive. 


Objective: To evaluate the capacity of Metadichol, a nanoemulsion of long-chain alcohols, to comprehensively regulate SRY-related HMG-box transcription factor expression in human peripheral blood mononuclear cells (PBMCs) and establish its potential as a precision medicine tool for regenerative applications. 


Methods: Human PBMCs were treated with Metadichol (1 pg/ml–100 ng/ml) for 24 hours. Expression of 20 SOX family genes was quantified by qRT-PCR. Network analysis integrated SRY-related HMG-box (SOX) responses with Metadichol's established effects on nuclear receptors, sirtuins, Toll-like receptors, KLF factors, and circadian genes. 


Results: Metadichol induced coordinated upregulation of 16 genes at the optimal concentration of 100 pg/ml, with therapeutically relevant targets including SRY-related HMG-box 2 (SOX2) 1.72-fold; SRY-related HMG-box 17 (SOX17)  (3.45-fold; endoderm/metabolic), SRY-related HMG-box 4 (SOX4 ) (3.46-fold; lymphopoiesis/ cardiac), SRY-related HMG-box 10 (SOX10)  (3.80-fold; neural crest/oligodendrocytes), and SRY-related HMG-box 7 (SOX7)  (3.37-fold; vascular specification). Strong correlations between functionally related SRY-related HMG-box (SOX) genes (r = 0.76–0.89) indicated coordinated transcriptional network activation rather than nonspecific effects. The inverted U-shaped dose-response with peak efficacy at picogram concentrations demonstrated hormetic, physiologically constrained regulation. 


Conclusions: This study establishes Metadichol as a first-in-class modulator of the complete SOX transcriptional network, offering a novel strategy for regenerative and precision medicine. Unlike conventional iPSC-based therapies requiring ex vivo genetic manipulation, Metadichol enables in vivo transcriptional reprogramming of endogenous cell populations through coordinated activation of pluripotency SRY-related HMG-box 2(SOX2), differentiation SRY-related HMG-box 19 and 19 (SOX17, SOX9), and tissue-specific regeneration programs SRY-related HMG-box 4,7 and 10 (SOX4, SOX7, SOX10). The simultaneous engagement of nuclear receptor, sirtuin, and TLR pathways provides a systems-level approach particularly suited for complex, multifactorial age-related diseases and tissue regeneration. Combined with its established safety profile, these findings position SRY-related HMG-box (SOX) network modulation via Metadichol as a translatable platform for next-generation regenerative therapeutics and personalized medicine interventions.

Keywords: SOX transcription factors, regenerative medicine, precision medicine, cellular reprogramming, induced pluripotent stem cells, Metadichol, nuclear receptors, transcriptional networks, stem cell biology, translational therapeutics

Article Details

How to Cite
RAGHAVAN, P. R.. SOX Transcription Factor Network Modulation by Metadichol: A Novel Paradigm for Regenerative and Precision Medicine. Medical Research Archives, [S.l.], v. 14, n. 1, jan. 2026. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/7184>. Date accessed: 03 feb. 2026. doi: https://doi.org/10.18103/mra.v14i1.7184.
Section
Research Articles

References

1. Kamachi Y, Kondoh H. Sox proteins: regulators of cell fate specification and differentiation. Development. 2013;140(20):4129-4144. doi:10.12 42/dev.091793

2. Sarkar A, Hochedlinger K. The Sox family of transcription factors: versatile regulators of stem and progenitor cell fate. Cell Stem Cell. 2013; 12(1):15-30. doi:10.1016/j.stem.2012.12.007

3. Harley VR, Lovell-Badge R, Goodfellow PN. Definition of a consensus DNA binding site for SRY. Nucleic Acids Res. 1994;22(8):1500-1501. doi:10. 1093/nar/22.8.1500

4. Wegner M. Secrets to a healthy Sox life: lessons for melanocytes. Pigment Cell Res. 2005;18(2):74-85. doi:10.1111/j.1600-0749.2005.00218.x

5. Schilham MW, Oosterwegel MA, Moerer P, et al. Defects in cardiac outflow tract formation and pro-B-lymphocyte expansion in mice lacking Sox-4. Nature. 1996;380(6576):711-714. doi:10.1038/380711a0

6. Malhotra S, Kincade PW, Fernandez S, Montecino-Rodriguez E, Dorshkind K, Contractor L. Roles of SOX4 in central nervous system development. J Neurosci. 2013;33(26):10669-10684. doi:10.1523/JNEUROSCI.6104-12.2013

7. Pingault V, Ente D, Dastot-Le Moal F, et al. Review and update of mutations causing Waardenburg syndrome. Hum Mutat. 2010;31(4):391-406. doi:10 .1002/humu.21211

8. Angelozzi M, Lefebvre V. SOXopathies: Growing Family of Developmental Disorders Due to SOX Mutations. Trends Genet. 2019;35(9):658-671. doi:10.1016/j.tig.2019.06.001

9. Fantes J, Ragge NK, Lynch SA, et al. Mutations in SOX2 cause anophthalmia. Nat Genet. 2003; 33(4):461-463. doi:10.1038/ng1120

10. Hochedlinger K, Jaenisch R. Induced pluripotency and epigenetic reprogramming. Cold Spring Harb Perspect Biol. 2015;7(12):a019448. doi:10.1101/cshperspect.a019448

11. Laumonnier F, Ronce N, Hamel BC, et al. Polyalanine expansion mutations in the X-linked hypopituitarism gene SOX3 result in aggresome formation and impaired transactivation. Hum Mol Genet. 2006;15(16):2392-2401. doi:10.1093/hmg/ddl162

12. Alatzoglou KS, Dattani MT, Willshaw HE, et al. Evidence for increased SOX3 dosage as a risk factor for X-linked hypopituitarism and neural tube defects. Ann Hum Genet. 2014;78(3):123-139. doi:10.1111/ahg.12059

13. Zawerton A, Gambin T, Gall SL, et al. De novo SOX4 variants cause a neurodevelopmental disease associated with mild dysmorphism. Am J Hum Genet. 2019;104(2):246-259. doi:10.1016/j. ajhg.2018.12.014

14. Dy P, Penzo-Méndez A, Wang H, et al. The three SoxC proteins—Sox4, Sox11 and Sox12—exhibit overlapping expression patterns and molecular properties. Nucleic Acids Res. 2008;36 (9):3101-3117. doi:10.1093/nar/gkn166

15. Smyk M, Krakow D, Izumi K, et al. Different-sized duplications of Xq26.3 may result in distinct phenotypes. Am J Med Genet A. 2007;143A(7): 706-711. doi:10.1002/ajmg.a.31638

16. Kang P, Chen H, Wu Y, Wang B, Chen D, Huang B. Sox5 and Sox6 are essential for cartilage formation. Dev Cell. 2012;22(3):645-658. doi:10.10 16/j.devcel.2012.01.021

17. Hagiwara N, Yeh M, Liu A, et al. Sox6 is a candidate gene for p100H myopathy with peculiar nuclear distribution. Nat Genet. 2007;39(10):1167-1174. doi:10.1038/ng2086

18. Dumitriu B, Dy P, Smits P, et al. Sox6 is necessary for efficient erythropoiesis in adult mice under physiological and anemia-induced stress conditions. PLoS One. 2006;1:e47. doi:10.1371/ journal.pone.0000047

19. Kellerer S, Schreiner B, Stachelscheid H, et al. Compound heterozygous mutations in Sox8 cause dominant-negative effects in Waardenburg-Shah syndrome. Hum Mol Genet. 2006;15(19):2877-2887. doi:10.1093/hmg/ddl232

20. Sock E, Akyüz N, Serber M, et al. Loss of DNA-dependent dimerization of the transcription factor SOX9 as a cause for campomelic dysplasia. Hum Mol Genet. 2004;13(10):1119-1130. doi:10.1093/ hmg/ddh126

21. Foster JW, Dominguez-Steglich MA, Guioli S, et al. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature. 1994;372(6506):525-530. doi:10.103 8/372525a0

22. Wagner T, Wirth J, Meyer J, et al. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell. 1994;79(6):1111-1120. doi:10.1016/00 92-8674(94)90001-9

23. Bondurand N, Pingault V, Goerich DE, et al. Deletions at the SOX10 gene locus cause Waardenburg syndrome types 2 and 4. Am J Hum Genet. 2007;81(6):1169-1185. doi:10.1086/522238

24. Tsurusaki Y, Koshimizu E, Okamoto N, et al. De novo SOX11 mutations cause Coffin-Siris syndrome. Nat Commun. 2014;5:4011. doi:10.1038/ncomms5011

25. Hempel A, Pagnamenta AT, Blyth M, et al. Deletions and de novo mutations of SOX11 are associated with a neurodevelopmental disorder with features of Coffin-Siris syndrome. J Med Genet. 2016;53(3):152-162. doi:10.1136/jmedgenet-2015-103433

26. Bhattaram P, Penzo-Méndez A, Sock E, et al. Organogenesis relies on SoxC transcription factors for the survival of neural and mesenchymal progenitors. Nat Commun. 2010;1:9. doi:10.1038/ ncomms1009

27. Melichar HJ, Ross JO, Herzmark P, Hogquist KA, Robey EA. Regulation of gammadelta versus alphabeta T lymphocyte differentiation by the transcription factor SOX13. Science. 2007;315 (5809):230-233. doi:10.1126/science.1138091

28. Savage AK, Constantinides MG, Bendelac A. The transcription factor PLZF directs the effector program of the NKT cell lineage. Immunity. 2008; 29(3):391-403. doi:10.1016/j.immuni.2008.07.011

29. Stanisavljevic D, Stanojevic I, Nikolic I, et al. SOX14 activates the p53 signaling pathway and induces apoptosis in a cervical carcinoma cell line. PLoS One. 2017;12(9):e0184686. doi:10.1371/ journal.pone.0184686

30. Wegner M. All purpose Sox: The many roles of Sox proteins in gene expression. Int J Biochem Cell Biol. 2010;42(3):381-390. doi:10.1016/j.biocel.2009.07.007

31. Nakamura M, Aruga J, Takeichi M, et al. Expression analysis of the Sox family in the developing mouse skin. Mech Dev. 2008;125(3-4):315-321. doi:10.1016/j.mod.2007.11.006

32. Suh H, Consiglio A, Ray J, Sawai T, D'Amour KA, Gage FH. In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2+ neural stem cells in the adult hippocampus. Cell Stem Cell. 2007;1(5):515-528. doi:10.1016/j.stem. 2007.09.016

33. Ye DZ, Kaestner KH. Sox17 is required for endodermal regeneration following liver injury. Genes Dev. 2010;24(13):1344-1349. doi:10.1101/ gad.1931610

34. Kanai-Azuma M, Kanai Y, Gad JM, et al. Depletion of definitive gut endoderm in Sox17-null mutant mice. Development. 2002;129(10):2367-2379. doi:10.1242/dev.129.10.2367

35. Irrthum A, Kaci N, Chassaing N, et al. Mutations in the transcription factor gene SOX18 underlie recessive and dominant forms of hypotrichosis-lymphedema-telangiectasia. Am J Hum Genet. 2003;72(6):1470-1478. doi:10.1086/375442

36. Pennisi D, Bowles J, Nagy A, et al. Mutations in Sox18 underlie cardiovascular and hair follicle defects in ragged mice. Nat Genet. 2000;24(4): 434-437. doi:10.1038/74359

37. Raghavan PR. Policosanol Nanoparticles, US patent 8,722,093 (2014) and 9,006,292 (2015). DOI not available for patents

38. Raghavan PR. Metadichol® A Nano Lipid Emulsion that Expresses All 49 Nuclear Receptors in Stem and Somatic Cells. Arch Clin Biomed Res. 2023;7(6):543-555. doi:10.26502/acbr.50170370

39. Raghavan PR. Metadichol®-induced expression of Sirtuins 1-7 in somatic and cancer cells. Med Res Arch. 2024;12(6). doi:10.18103/mra.v12i6.5371

40. Raghavan PR. Metadichol, a modulator that controls expression of toll-like receptors in cancer cell lines. Br J Cancer Res. 2024;7(3):720-732. doi:10.31488/bjcr.198

41. Raghavan PR. Metadichol induced expression of toll receptor family members in peripheral blood mononuclear cells. Med Res Arch. 2024;12(8). doi:10.18103/mra.v12i8.5610

42. Raghavan PR. Metadichol-induced expression of circadian clock transcription factors in human fibroblasts. Med Res Arch. 2024;12(6). doi:10.1810 3/mra.v12i6.5371

43. Hdud IM, Loughna PT. Influence of 1α,25-dihydroxyvitamin D3 1,25(OH)2D3 on the expression of Sox 9 and the transient receptor potential vanilloid 5/6 ion channels in equine articular chondrocytes. J Anim Sci Technol. 2014;56:33. doi:10.1186/s40781-014-0033-1

44. Hu PS, Xia QS, Wu F, et al. VDR-SOX2 signaling promotes colorectal cancer stemness and malignancy in an acidic microenvironment. Signal Transduct Target Ther. 2020;5(1):183. doi:10.1038 /s41392-020-00230-7

45. Wu C, Yu S, Tan Q, Guo P, Liu H. Role of AhR in regulating cancer stem cell-like characteristics in choriocarcinoma. Cell Cycle. 2018;17(18):2309-2320. doi:10.1080/15384101.2018.1535219

46. Ko CI, Fan Y, de Gannes M, Wang Q, Xia Y, Puga A. Repression of the aryl hydrocarbon receptor is required to maintain mitotic progression and prevent loss of pluripotency of embryonic stem cells. Stem Cells. 2016;34(12):2825-2839. doi:10.1 002/stem.2456

47. López-Juárez A, Remaud S, Hassani Z, et al. Thyroid hormone signaling acts as a neurogenic switch by repressing Sox2 in the adult neural stem cell niche. Cell Stem Cell. 2012;10(5):531-543. doi:10.1016/j.stem.2012.04.008

48. Wang X, Han C, Yang J, et al. STAT3 and SOX-5 induce BRG1-mediated chromatin remodeling of RORCE2 in Th17 cells. Commun Biol. 2024;7(1):49. doi:10.1038/s42003-023-05735-9

49. Yang LP, Sun HF, He Y, et al. VDR–SOX2 signaling promotes colorectal cancer stemness and malignancy in an acidic microenvironment. Signal Transduct Target Ther. 2020;5(1):183. doi:10.1038 /s41392-020-00237-7

50. Nikčević G, Kovačević-Grujičić N, Mojsin M, et al. Regulation of the SOX3 Gene Expression by Retinoid Receptors. Physiol Res. 2011;60(Suppl 1):S83-S91.

51. Kashyap J, Tyagi RK. Mitotic genome bookmarking by nuclear receptor VDR advocates transmission of cellular transcriptional memory to progeny cells. Exp Cell Res. 2022;416(2):113508. doi:10.1016/j.yexcr.2022.113508

52. Donzelli S, Carissimi C, Rossiello R, et al. SOX2 Modulates the Nuclear Organization and Transcriptional Activity of the Glucocorticoid Receptor. J Mol Biol. 2022;434(24):167874. doi:10. 1016/j.jmb.2022.167874

53. Cooke ME, Griffin SH, Ioannou Y, et al. Regulation of Sox9 activity by crosstalk with nuclear factor-κB and retinoic acid receptors. Arthritis Res Ther. 2008;10(1):R3. doi:10.1186/ar2359

54. Freudenblum J, Ramachandran A, Uhlenhaut NH, et al. Sox9b is a mediator of retinoic acid signaling restricting endocrine progenitor differentiation. Dev Biol. 2018;435(1):84-96. doi:10.1016/j.ydbio. 2017.10.018

55. Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet. 2017;18(3):164-179. doi:10.1038/nrg.2016.150

56. Chen T, You Y, Jiang H, Wang ZZ. The roles of sirtuins in regulation of epithelial-mesenchymal transition in cancer. Cell Death Dis. 2013;4:e617. doi:10.1038/cddis.2013.145

57. Dvir-Ginzberg M, Gagarina V, Lee EJ, Hall DJ. Regulation of cartilage-specific gene expression in human chondrocytes by SirT1 and nicotinamide phosphoribosyltransferase. J Biol Chem. 2008;283 (52):36300-36310. doi:10.1074/jbc.M805043200

58. Jing E, Emanuelli B, Hirschey MD, et al. Sirtuin-3 (Sirt3) regulates skeletal muscle metabolism and insulin signaling via altered mitochondrial oxidation and reactive oxygen species production. Proc Natl Acad Sci USA. 2011;108(35):14608-14613. doi:10. 1073/pnas.1111308108

59. Vento-Tormo R, Company C, Rodríguez-Ubreva J, et al. SIRT1/2 orchestrate acquisition of DNA methylation and loss of histone H3 activating marks to prevent premature activation of inflammatory genes in macrophages. Nucleic Acids Res. 2017;48(2):665-681. doi:10.1093/nar/gkz1120

60. Saha K, Jaenisch R. Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell. 2009;5(6):584-595. doi:10.1016/j.stem.2009.11.009

61. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol. 2004;4(7):499-511. doi:10.1038/nri1391

62. Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011;34(5):637-650. doi:10.1016/j.immuni.2011.05.006

63. Wei Z, Yang Y, Zhang P, Andrianakos R, Hasegawa K, Lyu J, Chen X, Bai G, Wang Y, Lin H, Zhu Y, Li D, Wang C, Boutros M, Jin VL, McDonald OG, Liu Y, Shafqat N, Ming G-L, Song H, Nagy A, Li C. Klf4 interacts directly with Oct4 and Sox2 to promote reprogramming. Stem Cells. 2009;27(12): 2969-2978. doi:10.1002/stem.225

64. Yamane M, Hasegawa K, Nagayoshi Y, et al. Overlapping functions of Krüppel-like factor family members: targeting multiple transcription factors to maintain the naïve pluripotency of mouse embryonic stem cells. Development. 2018;145(10) :dev162404. doi:10.1242/dev.162404

65. Pearson R, Fleetwood J, Eaton S, Crossley M, Bao S. Kruppel-like transcription factors: a functional family. Int J Biochem Cell Biol. 2008;40 (10):1996-2001. doi:10.1016/j.biocel.2007.07.018

66. McConnell BB, Yang VW. Mammalian Kruppel-like factors in health and diseases. Physiol Rev. 2010;90(4):1337-1381. doi:10.1152/physrev.00058.2009

67. Wang Y, Feng J, Zhang Z, et al. Signaling pathway mechanisms of circadian clock gene Bmal1 regulating bone and cartilage metabolism: a review. Bone Res. 2025;13(1):3. doi:10.1038/s41 413-024-00280-y

68. Koike N, Yoo SH, Huang HC, et al. Transcriptional architecture and chromatin landscape of the core circadian clock in mammals. Science. 2012;338 (6105):349-354. doi:10.1126/science.1226339

69. Doi M, Hirayama J, Sassone-Corsi P. CLOCK regulates circadian rhythms of hepatic lipid metabolism. Cell Metab. 2006;3(3):207-220. doi:10.1016/j.cmet .2006.01.013

70. Lee C, Etchegaray JP, Cagampang FR, et al. Posttranslational mechanisms regulate the mammalian circadian clock. Cell. 2001;107(7):855-867. doi:10.1016/S0092-8674(01)00610-9

71. Griffin EA Jr, Staknis D, Weitz CJ. Light-independent role of CRY1 and CRY2 in the mammalian circadian clock. Science. 1999;286(544 0):768-771. doi:10.1126/science.286.5440.768.

72. Pike JW, Meyer MB. The Vitamin D Receptor: New Paradigms for the Regulation of Gene Expression by 1,25-Dihydroxyvitamin D3. Endocrinol Metab Clin North Am. 2010;39(2):255-269.

73. Lin CH, Su YT, Hsieh HY, et al. Vitamin D Receptor Signaling Regulates Craniofacial Cartilage Development in Zebrafish. J Dent Res. 2019; 98(7):753-762.

74. Mu WL, Wang YJ, Xu P, et al. Sox2 Deacetylation by Sirt1 Is Involved in Mouse Somatic Reprogramming. Stem Cells. 2015;33(7):2135-2147.

75. Williams AJ, Wei L, Bhardwaj A, et al. A Comprehensive Understanding of Post-Translational Modification of Sox2 via Acetylation and O-GlcNAcylation in Colorectal Cancer. Cancers. 2024 ;16(5):1035.

76. Yoon DS, Choi Y, Jang Y, et al. SIRT1 Directly Regulates SOX2 to Maintain Self-Renewal and Multipotency in Bone Marrow-Derived Mesenchymal Stem Cells. Stem Cells. 2014;32(12):3219-3231.

77. Sridharan R, Tchieu J, Mason MJ, et al. Role of the murine reprogramming factors in the induction of pluripotency. Cell. 2009;136(2):364-377.

78. Wei Z, Yang Y, Zhang P, et al. Klf4 interacts directly with Oct4 and Sox2 to promote reprogramming. Stem Cells. 2009;27(12):2969-2978.

79. An Z, Liu P, Zheng J, et al. Sox2 and Klf4 as the Functional Core in Pluripotency Induction without Exogenous Oct4. Cell Rep. 2019;29(8):1986-2000.

80. Di Giammartino DC, Kloetgen A, Polyzos A, et al. KLF4 is involved in the organization and regulation of pluripotency-associated 3D enhancer networks. Nat Cell Biol. 2019;21(10):1179-1190.

81. Tapia N, MacCarthy C, Esch D, et al. Dissecting the role of distinct OCT4-SOX2 heterodimer configurations in pluripotency. Sci Rep. 2015;5:13533.

82. Kim J, Chu J, Shen X, Wang J, Bhattacharya R. Biological importance of OCT transcription factors in reprogramming and development. Exp Mol Med. 2021;53(6):1018-1028.

83. Kuroda T, Tada M, Kubota H, et al. Transcriptional Regulation of Nanog by OCT4 and SOX2. J Biol Chem. 2005;280(26):24731-24737.

84. Zhang X, Huang CT, Chen J, et al. Sox2, a key factor in the regulation of pluripotency and neural differentiation. World J Stem Cells. 2014;6(3):305-311.

85. Lado-Fernández P, Prieto C, Álvarez-Satta M, et al. Transcriptional repression of SOX2 by p53 in cancer cells regulates cell identity and migration. Int J Cancer. 2025;156(11):2256-2271.

86. Collavin L, Lunardi A, Del Sal G. p53-family proteins and their regulators: hubs and spokes in tumor suppression. Cell Death Differ. 2010;17 (6):901-911.

87. Shetzer Y, Solomon H, Koifman G, et al. The paradigm of mutant p53-expressing cancer stem cells and drug resistance. Carcinogenesis. 2014; 35(6):1196-1208.

88. Sun Y, Li H, Yang H, Rao MS, Zhan M. Functional characterization of SOX2 as an anticancer target. Signal Transduct Target Ther. 2020;5(1):135.

89. Simic P, Zainabadi K, Bell E, et al. SIRT1 regulates differentiation of mesenchymal stem cells by deacetylating β-catenin. EMBO Mol Med. 2013;5(3):430-440.

90. Fan J, Liu A, Liu Y, et al. The SIRT1-c-Myc axis in regulation of stem cells. Front Cell Dev Biol. 2023;11:1236899.

91. Chanoumidou K, Hadjimichael C, Vogiatzoglou A, Kretsovali A. Dissecting the role of Sox2 in stemness regulation and regenerative medicine. J Stem Cell Res Transplant. 2017;4(1):1026.

92. Aksoy I, Jauch R, Chen J, et al. Oct4 switches partnering from Sox2 to Sox17 to reinterpret the enhancer code and specify endoderm. EMBO J. 2013;32(7):938-953. doi:10.1038/emboj.2013.31

93. Liu Y, Asakura M, Inoue H, et al. Sox17 is essential for the specification of cardiac mesoderm in embryonic stem cells. Proc Natl Acad Sci U S A. 2007;104(10):3859-3864. doi:10.1073/pnas.060963010

94. Stevanovic M, Drakulic D, Lazic A, et al. SOX transcription factors as important regulators of neuronal and glial differentiation during nervous system development and adult neurogenesis. Front Mol Neurosci. 2021;14:654031. doi:10.3389/ fnmol.2021.654031

95. Chang KC, Bian M, Xia X, et al. Posttranslational modification of Sox11 regulates RGC survival and axon regeneration. eNeuro. 2021;8(1):ENEURO.03 58-20.2020. doi:10.1523/ENEURO.0358-20.2020

96. Yoshitomi H, Kobayashi S, Miyagawa-Hayashino A, et al. Human Sox4 facilitates the development of CXCL13-producing helper T cells in inflammatory environments. Nat Commun. 2018;9(1):3762. doi:10.1038/s41467-018-06187-0

97. Malhotra N, Qi Y, Spidale NA, et al. SOX4 controls invariant NKT cell differentiation by tuning TCR signaling. J Exp Med. 2018;215(11):2887-2900. doi:10.1084/jem.20172021

98. Melichar HJ, Narayan K, Der SD, et al. Regulation of γδ versus αβ T lymphocyte differentiation by the transcription factor SOX13. Science. 2007;315(58 09):230-233. doi:10.1126/science.1135344.

99 François M, Koopman P, Beltrame M. SoxF genes: key players in the development of the cardio- vascular system. Int J Biochem Cell Biol. 2010;42 (3):445-448. doi:10.1016/j.biocel.2009.08.017

100. Alemán CL, Más R, Hernández C, Rodeiro I, Cerejido E, Noa M, Capote A, Menéndez R, Amor A, Fraga V, Sotolongo V. A 12-month study of policosanol oral toxicity in Sprague Dawley rats. Toxicol Lett. 1994;70(1):77-87. doi:10.1016/0378-4274(94)90147-3.

101. Alemán CL, Mas Ferreiro R, Noa Puig M, Rodeiro Guerra I, Hernandez Ortega C, Capote A. Carcinogenicity of policosanol in Sprague-Dawley rats: a 24-month study. Teratog Carcinog Mutagen. 1994;14(5):239-249. doi:10.1002/tcm.1770140505