Next Generation Large Animal Oncology Preclinical Transitional Platform: Developing New Approach Methodologies and Emerging Regulatory Considerations
Main Article Content
Abstract
Preclinical cancer models are essential for assessing the safety and efficacy of new therapeutics. The goals of this review are to address the development of an in vivo cancer technology platform that provides a tool for addressing emerging preclinical regulatory processes required for advancing new therapeutics and devices for use into the clinic. Previous studies have established the utility of porcine models as an alternative large animal model for cancer research due to their similarity to human size, genetics, metabolism, and physiology. Additionally, tumorigenesis pathways are similar between human and pigs in that similar driver mutations are required for transformation. Due to their larger size porcine models can be harnessed for testing of new interventional devices and radiological/surgical approaches as well. Taken together, swine are a feasible option for preclinical therapeutic and device testing. This review provides insights into the value of in vivo porcine models to provide both toxicity and efficacy data to support pre-clinical trials. The article describes next generation large animal models for cancer research, focusing on how genetically engineered pigs—particularly the Oncopig® and mini-Oncopig can bridge the gap between lab experiments and real-world human clinical trials. Evidence is provided to demonstrate how these models address major shortcomings of traditional methods and help accelerate safe and effective cancer treatment development. The inducible transgenic Oncopig and mini-Oncopig develop site and cell and driver mutation specific tumors for preclinical human cancer that supports preclinical evaluation of novel drugs, biologicals, devices and locoregional therapies. The Wisconsin Mini-swine-Oncopig is a minipig nutritionally inducible metabolic diseases (fatty liver disease and obesity) in a small animal applicable for pharmaceutical evaluation. A final and important goal of this review is to demonstrate that such cancer models are consistent with the 3-Rs and support emerging new approach methodologies evaluations.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Onaciu A, Munteanu R, Munteanu VC, et al. Spontaneous and Induced Animal Models for Cancer Research. Diagnostics (Basel). Aug 31 2020;10(9)doi:10.3390/diagnostics10090660
3. Sajjad H, Imtiaz S, Noor T, Siddiqui YH, Sajjad A, Zia M. Cancer models in preclinical research: A chronicle review of advancement in effective cancer research. Animal Model Exp Med. Jun 2021;4(2):87-103. doi:10.1002/ame2.12165
4. de Jong M, Maina T. Of mice and humans: are they the same?--Implications in cancer translational research. J Nucl Med. Apr 2010;51(4):501-4. doi:10.2967/jnumed.109.065706
5. Hou N, Du X, Wu S. Advances in pig models of human diseases. Animal Model Exp Med. Apr 2022;5(2):141-152. doi:10.1002/ame2.12223
6. Hicks WH, Bird CE, Pernik MN, et al. Large Animal Models of Glioma: Current Status and Future Prospects. Anticancer Res. Nov 2021;41(11):5343-5353. doi:10.21873/anticanres.15347
7. Aravalli RN, Golzarian J, Cressman EN. Animal models of cancer in interventional radiology. Eur Radiol. May 2009;19(5):1049-53. doi:10.1007/s00330-008-1263-8
8. Meyerholz DK, Burrough ER, Kirchhof N, Anderson DJ, Helke KL. Swine models in translational research and medicine. Vet Pathol. Jul 2024;61(4):512-523. doi:10.1177/03009858231222235
9. Schachtschneider KM, Mehta V, Rege J, Schook LB. Oncopigs: an inducible transgenic large animal cancer model to address pre-clinical assessments. Medical Research Archives. 2025-03-29 2025;13(3)doi:10.18103/mra.v13i3.6392
10. Schachtschneider KM, Jungersen G, Schook LB, Shanmuganayagam D. Editorial: "Humanized" Large Animal Cancer Models: Accelerating Time and Effectiveness of Clinical Trials. Front Oncol. 2019;9:793. doi:10.3389/fonc.2019.00793
11. Schachtschneider KM, Redlon LN, Lokken RP, et al. Epigenetic regulation of individual components of combined hepatocellular-cholangiocarcinoma. PLoS One. 2025;20(5):e0324145. doi:10.1371/journal.pone.0324145
12. Schachtschneider KM, Schwind RM, Darfour-Oduro KA, et al. A validated, transitional and translational porcine model of hepatocellular carcinoma. Oncotarget. Sep 8 2017;8(38):63620-63634. doi:10.18632/oncotarget.18872
13. Schachtschneider KM, Schwind RM, Newson J, et al. The Oncopig Cancer Model: An Innovative Large Animal Translational Oncology Platform. Front Oncol. 2017;7:190. doi:10.3389/fonc.2017.00190
14. Schook LB, Collares TV, Darfour-Oduro KA, et al. Unraveling the swine genome: implications for human health. Annu Rev Anim Biosci. 2015;3:219-44. doi:10.1146/annurev-animal-022114-110815
15. Joshi K, Telugu BP, Prather RS, et al. Benefits and opportunities of the transgenic Oncopig cancer model. Trends Cancer. Mar 2024;10(3):182-184. doi:10.1016/j.trecan.2024.01.005
16. Xu C, Wu S, Schook LB, Schachtschneider KM. Translating Human Cancer Sequences Into Personalized Porcine Cancer Models. Front Oncol. 2019;9:105. doi:10.3389/fonc.2019.00105
17. Gaba RC, Elkhadragy L, Boas FE, et al. Development and comprehensive characterization of porcine hepatocellular carcinoma for translational liver cancer investigation. Oncotarget. Jul 14 2020;11(28):2686-2701. doi:10.18632/oncotarget.27647
18. Lobianco F, Giurini E, Neto M, et al. 03:27 PM Abstract No. 221 Porcine and human hepatocellular carcinoma cell lines present similar drug-metabolizing enzyme expression levels and comparable sorafenib and doxorubicin cytotoxic responses. Journal of Vascular and Interventional Radiology. 2019;30(3):S99-S100. doi:10.1016/j.jvir.2018.12.279
19. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. May 2021;71(3):209-249. doi:10.3322/caac.21660
20. Wong CH, Siah KW, Lo AW. Estimation of clinical trial success rates and related parameters. Biostatistics. Apr 1 2019;20(2):273-286. doi:10.1093/biostatistics/kxx069
21. Fogel DB. Factors associated with clinical trials that fail and opportunities for improving the likelihood of success: A review. Contemp Clin Trials Commun. Sep 2018;11:156-164. doi:10.1016/j.conctc.2018.08.001
22. Siegel RL, Kratzer TB, Giaquinto AN, Sung H, Jemal A. Cancer statistics, 2025. CA: A Cancer Journal for Clinicians. 2025;75(1):10-45. doi:https://doi.org/10.3322/caac.21871
23. Sinkala M. Mutational landscape of cancer-driver genes across human cancers. Sci Rep. Aug 7 2023;13(1):12742. doi:10.1038/s41598-023-39608-2
24. Sun D, Gao W, Hu H, Zhou S. Why 90% of clinical drug development fails and how to improve it? Acta Pharm Sin B. Jul 2022;12(7):3049-3062. doi:10.1016/j.apsb.2022.02.002
25. Boettcher AN, Schachtschneider KM, Schook LB, Tuggle CK. Swine models for translational oncological research: an evolving landscape and regulatory considerations. Mamm Genome. Mar 2022;33(1):230-240. doi:10.1007/s00335-021-09907-y
26. Pollock CB, Rogatcheva MB, Schook LB. Comparative genomics of xenobiotic metabolism: a porcine-human PXR gene comparison. Mamm Genome. Mar 2007;18(3):210-9. doi:10.1007/s00335-007-9007-7
27. Elkhadragy L, Gaba RC, Niemeyer MM, Schook LB, Schachtschneider KM. Translational Relevance and Future Integration of the Oncopig Cancer Model in Preclinical Applications. Annu Rev Anim Biosci. Oct 17 2024;doi:10.1146/annurev-animal-111523-102125
28. Honkala A, Malhotra SV, Kummar S, Junttila MR. Harnessing the predictive power of preclinical models for oncology drug development. Nature Reviews Drug Discovery. 2022/02/01 2022;21(2):99-114. doi:10.1038/s41573-021-00301-6
29. Reardon S. US science academies take on human-genome editing. Nature. 2015/05/18 2015;doi:10.1038/nature.2015.17581
30. Reardon S. Beyond lab animals. Science. Aug 14 2025;389(6761):676-679. doi:10.1126/science.aeb3933
31. Ineichen BV, Furrer E, Grüninger SL, Zürrer WE, Macleod MR. Analysis of animal-to-human translation shows that only 5% of animal-tested therapeutic interventions obtain regulatory approval for human applications. PLOS Biology. 2024;22(6):e3002667. doi:10.1371/journal.pbio.3002667
32. West GB, Brown JH, Enquist BJ. A general model for the origin of allometric scaling laws in biology. Science. Apr 4 1997;276(5309):122-6. doi:10.1126/science.276.5309.122
33. Schmidt-Nielsen K. Scaling, why is animal size so important? Cambridge University Press; 1984.
34. Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. J Basic Clin Pharm. Mar 2016;7(2):27-31. doi:10.4103/0976-0105.177703
35. Elkhadragy L, Carlino MJ, Jordan LR, et al. Development of a genetically tailored implantation hepatocellular carcinoma model in Oncopigs by somatic cell CRISPR editing. Disease Models & Mechanisms. 2025;18(1)doi:10.1242/dmm.052079
36. Khalafalla M, Viswakarma N, Elkhadragy L, et al. Abstract 5169: Validation of genetically defined Oncopig hepatocellular carcinoma cell lines for in vitro evaluation of targeted therapeutic efficacy. Cancer Research. 2025;85(8_Supplement_1):5169-5169. doi:10.1158/1538-7445.Am2025-5169
37. Elkhadragy L, Dasteh Goli K, Totura WM, et al. Effect of CRISPR Knockout of AXIN1 or ARID1A on Proliferation and Migration of Porcine Hepatocellular Carcinoma. Front Oncol. 2022;12:904031. doi:10.3389/fonc.2022.904031
38. Schachtschneider KM, Liu Y, Mäkeläinen S, et al. Oncopig Soft-Tissue Sarcomas Recapitulate Key Transcriptional Features of Human Sarcomas. Scientific Reports. 2017/06/01 2017;7(1):2624. doi:10.1038/s41598-017-02912-9
39. Robertson N, Schook LB, Schachtschneider KM. Porcine cancer models: potential tools to enhance cancer drug trials. Expert Opin Drug Discov. Aug 2020;15(8):893-902. doi:10.1080/17460441.2020.1757644
40. Hieromnimon M, Regan DP, Lokken RP, Schook LB, Gaba RC, Schachtschneider KM. Single and multi-omic characterization of a porcine model of ethanol-induced hepatic fibrosis. Epigenetics. Dec 2025;20(1):2471127. doi:10.1080/15592294.2025.2471127
41. Lee J, Boas FE, Duran-Struuck R, et al. Pigs as Clinically Relevant Models for Synergizing Interventional Oncology and Immunotherapy. J Vasc Interv Radiol. Jun 2024;35(6):809-817.e1. doi:10.1016/j.jvir.2024.01.005
42. Rund LA, Schachtschneider KM, Gaba RC, et al. Abstract 3105: Oncopig carcinoma cell lines: A foundation for co-clinical trials. Cancer Research. 2018;78(13 Supplement):3105-3105. doi:10.1158/1538-7445.Am2018-3105
43. Segatto NV, Simões LD, Bender CB, et al. Oncopig bladder cancer cells recapitulate human bladder cancer treatment responses in vitro. Original Research. Frontiers in Oncology. 2024-February-26 2024;Volume 14 - 2024doi:10.3389/fonc.2024.1323422
44. Nurili F, Monette S, Michel AO, et al. Transarterial Embolization of Liver Cancer in a Transgenic Pig Model. Journal of Vascular and Interventional Radiology. 2021/04/01/ 2021;32(4):510-517.e3. doi:https://doi.org/10.1016/j.jvir.2020.09.011
45. Jaroch DB, Liu Y, Kim AY, Katz SC, Cox BF, Hullinger TG. Intra-arterial Pressure-Enabled Drug Delivery Significantly Increases Penetration of Glass Microspheres in a Porcine Liver Tumor Model. J Vasc Interv Radiol. Oct 2024;35(10):1525-1533.e4. doi:10.1016/j.jvir.2024.06.030
46. Gaba RC, Elkhadragy L, Pennix T, et al. Magnetic Resonance Elastography for Staging Liver Fibrosis in the Oncopig. Diagnostics (Basel). Aug 28 2024;14(17)doi:10.3390/diagnostics14171880
47. Yasmin A, Regan DP, Schook LB, Gaba RC, Schachtschneider KM. Transcriptional regulation of alcohol induced liver fibrosis in a translational porcine hepatocellular carcinoma model. Biochimie. Mar 2021;182:73-84. doi:10.1016/j.biochi.2020.12.022
48. Namur J, Wassef M, Millot JM, Lewis AL, Manfait M, Laurent A. Drug-eluting beads for liver embolization: concentration of doxorubicin in tissue and in beads in a pig model. J Vasc Interv Radiol. Feb 2010;21(2):259-67. doi:10.1016/j.jvir.2009.10.026
49. Isfort P, Rauen P, Na HS, et al. Does Drug-Eluting Bead TACE Enhance the Local Effect of IRE? Imaging and Histopathological Evaluation in a Porcine Model. Cardiovasc Intervent Radiol. Jun 2019;42(6):880-885. doi:10.1007/s00270-019-02181-1
50. Schachtschneider K, Arepally A, Blanco D, et al. Abstract No. LBA2 Preclinical Evaluation of Yttrium-90 Radioembolization in the Oncopig Liver Cancer Model. Journal of Vascular and Interventional Radiology. 2024;35(3):S226. doi:10.1016/j.jvir.2024.01.016
51. Llovet JM, De Baere T, Kulik L, et al. Locoregional therapies in the era of molecular and immune treatments for hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. May 2021;18(5):293-313. doi:10.1038/s41575-020-00395-0
52. Patel SS, Sandur A, El-Kebir M, Gaba RC, Schook LB, Schachtschneider KM. Transcriptional Profiling of Porcine HCC Xenografts Provides Insights Into Tumor Cell Microenvironment Signaling. Front Genet. 2021;12:657330. doi:10.3389/fgene.2021.657330
53. Pirasteh A, Periyasamy S, Meudt JJ, et al. Staging Liver Fibrosis by Fibroblast Activation Protein Inhibitor PET in a Human-Sized Swine Model. J Nucl Med. Dec 2022;63(12):1956-1961. doi:10.2967/jnumed.121.263736
54. O'Connell RM, Horne S, O'Keeffe DA, et al. A novel low-cost high-fidelity porcine model of liver metastases for simulation training in robotic parenchyma-preserving liver resection. J Robot Surg. Nov 5 2024;18(1):394. doi:10.1007/s11701-024-02151-x
55. Ghosn M, Elsakka AS, Petre EN, et al. Induction and preliminary characterization of neoplastic pulmonary nodules in a transgenic pig model. Lung Cancer. Apr 2023;178:157-165. doi:10.1016/j.lungcan.2023.02.013
56. Joshi K, Suvilesh KN, Natesh NS, et al. Characterization of A Bronchoscopically Induced Transgenic Lung Cancer Pig Model for Human Translatability. bioRxiv. Nov 6 2024;doi:10.1101/2024.11.04.621940
57. Niemeyer MM, Wang Y, Carlino MJ, et al. Biodistribution of Macroaggregated Albumin after Tumor Model Development and Characterization in a Porcine Lung Cancer Model. J Vasc Interv Radiol. Nov 2025;36(11):1735-1745.e3. doi:10.1016/j.jvir.2025.08.007
58. Wehrenberg-Klee E, An T, Heidari P, et al. SPECT/CT Dosimetry of Bronchial Artery (99m)Tc Macroaggregated Albumin Injection in Pulmonary Malignancies: Feasibility Evaluation of Bronchial Artery (90)Y Radioembolization. Radiology. Feb 2025;314(2):e240331. doi:10.1148/radiol.240331
59. Carberry GA, Nocerino E, Cristescu MM, Smolock AR, Lee FT, Jr., Brace CL. Microwave Ablation of the Lung in a Porcine Model: Vessel Diameter Predicts Pulmonary Artery Occlusion. Cardiovasc Intervent Radiol. Oct 2017;40(10):1609-1616. doi:10.1007/s00270-017-1689-y
60. Rugivarodom M, Sonani H, Kamba S, Kee Song LW, Graham R, Rajan E. CREATING A PORCINE MODEL FOR COLORECTAL CANCER AND ASSESSING THE EFFICACY AND SAFETY OF ELECTROPORATION TREATMENT. Gastrointestinal Endoscopy. 2024;99(6):AB452-AB453. doi:10.1016/j.gie.2024.04.1426
61. Sommer CM, Arnegger F, Koch V, et al. Microwave ablation of porcine kidneys in vivo: effect of two different ablation modes ("temperature control" and "power control") on procedural outcome. Cardiovasc Intervent Radiol. Jun 2012;35(3):653-60. doi:10.1007/s00270-011-0171-5
62. Rice SL, Muñoz FG, Benjamin J, et al. Transcatheter pseudo-vascular isolation for localization and concentration of a large molecule theranostic probe into a transgenic OncoPIG kidney tumor. Nucl Med Biol. Sep-Oct 2024;136-137:108939. doi:10.1016/j.nucmedbio.2024.108939
63. Govindarajan N, Geschwind J, Bealo F, Janssen P, Bello PB, Danieli GD. Preclinical study of safety and efficacy in vivo of a yttrium-90 resin microspheres glue formulation in a large animal model of pancreatic cancer. Journal of Clinical Oncology. 2025;43(16_suppl):e16438-e16438. doi:10.1200/JCO.2025.43.16_suppl.e16438
64. Boas FE, Nurili F, Bendet A, et al. Induction and characterization of pancreatic cancer in a transgenic pig model. PLOS ONE. 2020;15(9):e0239391. doi:10.1371/journal.pone.0239391
65. Mondal P, Patel NS, Bailey K, et al. Induction of pancreatic neoplasia in the KRAS/TP53 Oncopig. Dis Model Mech. Jan 1 2023;16(1)doi:10.1242/dmm.049699
66. Principe DR, Overgaard NH, Park AJ, et al. KRAS(G12D) and TP53(R167H) Cooperate to Induce Pancreatic Ductal Adenocarcinoma in Sus scrofa Pigs. Sci Rep. Aug 22 2018;8(1):12548. doi:10.1038/s41598-018-30916-6
67. Aulitzky A VBR, Kim K, Al-Ahmadie H, Monette S, Coleman JA. MP14-02 DEVELOPMENT OF A PORCINE MODEL OF BLADDER CANCER USING THE ONCOPIG. Journal of Urology. 2023;209(Supplement 4):e182. doi:10.1097/JU.0000000000003234.02
68. Segatto NV, Bender CB, Seixas FK, et al. Perspective: Humanized Pig Models of Bladder Cancer. Front Mol Biosci. 2021;8:681044. doi:10.3389/fmolb.2021.681044
69. Selek L, Seigneuret E, Nugue G, et al. Imaging and histological characterization of a human brain xenograft in pig: the first induced glioma model in a large animal. J Neurosci Methods. Jan 15 2014;221:159-65. doi:10.1016/j.jneumeth.2013.10.002
70. Khoshnevis M, Carozzo C, Bonnefont-Rebeix C, et al. Development of induced glioblastoma by implantation of a human xenograft in Yucatan minipig as a large animal model. J Neurosci Methods. Apr 15 2017;282:61-68. doi:10.1016/j.jneumeth.2017.03.007
71. Khoshnevis M, Carozzo C, Brown R, et al. Feasibility of intratumoral 165Holmium siloxane delivery to induced U87 glioblastoma in a large animal model, the Yucatan minipig. PLoS One. 2020;15(6):e0234772. doi:10.1371/journal.pone.0234772
72. Tora MS, Texakalidis P, Neill S, et al. Lentiviral Vector Induced Modeling of High-Grade Spinal Cord Glioma in Minipigs. Sci Rep. Mar 24 2020;10(1):5291. doi:10.1038/s41598-020-62167-9
73. Rund LA, Ghoshal G, Williams E, et al. Abstract 2148: Image-guided catheter-based ultrasound thermal ablation of intramuscular and retroperitoneal sarcomas in the transgenic Oncopig cancer model. Cancer Research. 2018;78(13_Supplement):2148-2148. doi:10.1158/1538-7445.Am2018-2148
74. Overgaard NH, Principe DR, Schachtschneider KM, et al. Genetically Induced Tumors in the Oncopig Model Invoke an Antitumor Immune Response Dominated by Cytotoxic CD8β(+) T Cells and Differentiated γδ T Cells Alongside a Regulatory Response Mediated by FOXP3(+) T Cells and Immunoregulatory Molecules. Front Immunol. 2018;9:1301. doi:10.3389/fimmu.2018.01301
75. Overgaard NH, Fan TM, Schachtschneider KM, Principe DR, Schook LB, Jungersen G. Of Mice, Dogs, Pigs, and Men: Choosing the Appropriate Model for Immuno-Oncology Research. Ilar j. Dec 31 2018;59(3):247-262. doi:10.1093/ilar/ily014
76. Oh D, Hong N, Eun K, et al. Generation of a genetically engineered porcine melanoma model featuring oncogenic control through conditional Cre recombination. Sci Rep. Jan 10 2025;15(1):1616. doi:10.1038/s41598-024-82554-w
77. Lu T, Yang X, Huang Y, et al. Trends in the incidence, treatment, and survival of patients with lung cancer in the last four decades. Cancer Manag Res. 2019;11:943-953. doi:10.2147/cmar.S187317
78. Timmerman R, McGarry R, Yiannoutsos C, et al. Excessive toxicity when treating central tumors in a phase II study of stereotactic body radiation therapy for medically inoperable early-stage lung cancer. J Clin Oncol. Oct 20 2006;24(30):4833-9. doi:10.1200/jco.2006.07.5937
79. Lindberg K, Grozman V, Karlsson K, et al. The HILUS-Trial-a Prospective Nordic Multicenter Phase 2 Study of Ultracentral Lung Tumors Treated With Stereotactic Body Radiotherapy. J Thorac Oncol. Jul 2021;16(7):1200-1210. doi:10.1016/j.jtho.2021.03.019
80. Wang K, Eblan MJ, Deal AM, et al. Cardiac Toxicity After Radiotherapy for Stage III Non-Small-Cell Lung Cancer: Pooled Analysis of Dose-Escalation Trials Delivering 70 to 90 Gy. J Clin Oncol. May 1 2017;35(13):1387-1394. doi:10.1200/jco.2016.70.0229
81. Ricke J, Großer O, Amthauer H. Y90-radioembolization of lung metastases via the bronchial artery: a report of 2 cases. Cardiovasc Intervent Radiol. Dec 2013;36(6):1664-1669. doi:10.1007/s00270-013-0690-3
82. Bekiares NA, Chen AS, Shanmuganayagam D, et al. Effect of Caloric Restriction on Metabolic Dysfunction of Young Rapacz Familial Hypercholesterolemic Swine (Sus scrofa). Comp Med. Dec 1 2017;67(6):508-517.
83. Schmeisser S, Miccoli A, von Bergen M, et al. New approach methodologies in human regulatory toxicology – Not if, but how and when! Environment International. 2023/08/01/ 2023;178:108082. doi:https://doi.org/10.1016/j.envint.2023.108082