Acute Respiratory Distress Syndrome: a point of view

Main Article Content

Vinko Tomicic

Abstract

Summary

                                                                                                                                                    

Acute Respiratory Distress Syndrome (ARDS) is characterized by refractary hypoxemia due to a variable grade of alveolar collapse because of the gravitational gradient (sponge lung) and/or the alveolar occupation (alveolar floody). Current challenge is minimizing ventilator-induced lung injury (VILI) while providing a reasonable gas exchange.

 

Gas exchange and hemodynamics impact of mechanical ventilation (MV) depend on proportion of collapsed lung versus occupied alveoli which coexist in the same alveolar environment. When alveolar floody dominates, the lung has minimal recruitability and hemodynamic impact of insufflation is usually significant. When alveolar collapse is the most important phenomena we will have best recruitability and the hemodynamic impact of MV will be less. 

 

Some authors have shown good results with the use of maximum lung recruitment maneuvers to recruit lungs, even when alveolar occupation is predominant. However, it is a mistake to consider all injured lung tissue as potentially recruitable. High level of PEEP and recruitment maneuvers despite substantially improve oxygenation have shown no reduction in mortality.  

 

Reduce lung stress and strain using an appropriate ventilatory setting is achieved with very low tidal volumes (4 ml/kg PBW) and moderate/high level of PEEP, according to best respiratory system compliance. Currently, a study concluded that the driving pressure should be less than 16 cmH2O, because higher levels increase risk of death. These characteristics enforce to use an individual ventilatory approach.

 

Recently, it has been reported that VILI develops proportionally to external energy applied by the ventilator to the respiratory system; this concept is named mechanical power (MP). It considers the different variables related with the ventilator settings as cause of VILI: tidal volume (VT), driving pressure, respiratory rate, inspiratory flow, resistance and PEEP (equation of motion). Furthermore, we have extrapulmonary variables such as: perfusion, pH, gas tension and temperaturewhich can also influence.

Article Details

How to Cite
TOMICIC, Vinko. Acute Respiratory Distress Syndrome: a point of view. Medical Research Archives, [S.l.], v. 4, n. 8, dec. 2016. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/893>. Date accessed: 02 jan. 2025.
Keywords
ARDS, Respiratory Failure, PEEP, recruitment maneuvers
Section
Review Articles

References

References
1.- Pontoppidan H, Geffin B, Lowenstein E: Acute respiratory failure in the adult N Engl J Med 1972; 287:799–806
2.- Zapol WM, Snider MT, Hill JD, et al: Extracorporeal membrane oxygenation in severe acute respiratory failure: A randomized prospective study. JAMA 1979; 242:2193–2196.
3.- Gattinoni L, Agostoni A, Pesenti A, et al: Treatment of acute respiratory failure with low-frequency positive-pressure ventilation and extracorporeal removal of CO2. Lancet 1980; 2:292–294
4.- Gillette MA, Hess DR: Ventilator-induced lung injury and the evolution of lung protective strategies in acute respiratory distress syndrome. Respir Care 2001; 46: 130–148.
5.- Tremblay L, Valenza F, Ribeiro SP, et al: Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 1997; 99:944–95.
6.- Ranieri VM, Suter PM, Tortorella C, et al: Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: A randomized controlled trial. JAMA 1999; 282:54–61.
7.- Ashbaugh DG, Bigelow DB, Petty TL, Levine BE. Acute respiratory distress in adults. Lancet 1967; 2:319-323.
8.- Falke KJ, Pontoppidan H, Kumar A, et al. Ventilation with end expiratory pressure in acute lung disease J Clin Invest 1972; 51: 2315-23.
9.- Webb HH, Tierney DF. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressure: protection by positive end-expiratory pressure. Am Rev Respir Dis 1974; 110: 556-565.
10.- Romero PV. Alveolar micromechanics, Springer. Basic of respiratory mechanics, 1999.
11.- Tomicic V, Cruces P. Daño inducido por ventilación mecánica. ¿Podemos evitar el SDOM? Editorial. Revista Chilena de Medicina Intensiva 2005; Vol 20(2); 55-57.
12.- GattinoniL, Pesenti A. The concept of “baby lung”. Intensive Care Medicine 2005; 31: 776-784.
13.- Lai-Fook SJ. Stress distribution. In: Crystal RG, West JB, eds. The Lung. Scientific Foundations. New York: Marcel-Dekker, 1991:829-37.
14.- Eichacker PQ, Gerstenberger EP, Banks SM, Cui X, Natanson C. Meta-analysis of acute lung injury and acute respiratory distress síndrome trials testing low tidal volumes. Am J Respir Crit Care Med 2002; 166: 1510-14.
15.- Amato MBP, Meade MO, Slutsky AS, Brochard L, et al. Driving pressure and survival in the acute respiratory distess síndrome. N Engl J Med 2015; 372(8): 747-755.
16.- Rouby JJ, Puybasset L, Cluzel P, Richecoeur J, Lu Q, Grenier P. Regional distribution of gas and tissue in acute respiratory distress syndrome. II. Physiological correlations and definition of an ARDS Severity Score. CT Scan ARDS Study Group. Intensive Care Med 2000; 26: 1046–1056.
17.- Puybasset L, Cluzel P, Gusman P, Grenier P, Preteux F, Rouby JJ. Regional distribution of gas and tissue in acute respiratory distress syndrome. I. Consequences for lung morphology. CT Scan ARDS Study Group. Intensive Care Med 2000; 26: 857–869.
18.- Puybasset L, Gusman P, Muller J-C, et al. Regional distribution of gas and tissue in acute respiratory distress syndrome - part 3: Consequences for the effects of positive end expiratory pressure. Intensive Care Med 2000; 26: 1215–1227.
19.- Borges JB, Okamoto VN, Matos GFJ, Caramez MPR, Arantes PR, Barros F, Souza CE, Victorino JA, Kacmarek RM, Barbas CSV, Carvalho CRR, Amato MPB. Reversibility of lung collapse and hypoxemia in early acute respiratory distress syndrome. Am J Respir Crit Care Med 2006; 174: 1-11.
20.- Crotti S, Mascheroni D, Caironi P, Pelosi P, Ronzoni G, Mondito M, Marini J, Gattinoni L. Recruitment and derecruitment durin acute respiratory failure. A clinical study. Am J Respir Crit Care Med 2001; 164: 131-140.
21.- Pelosi P, Goldner M, McKibben A, et al. Recruitment and derecruitment during acute respiratory failure: an experimental study. Am J Respir Crit Care Med 2001; 164: 122-130.
22.- Jeffrey M. Halter, Jay M. Steinberg, Henry J. Schiller, Monica Da Silva, Louis A. Gatto, Steve Landas, and Gary F. Nieman. Positive End-Expiratory Pressure after a Recruitment Maneuver Prevents Both Alveolar Collapse and Recruitment/Derecruitment Am J Respir Crit Care Med 2003; 167: 1620-1626.
23.- Muscedere JG, Mullen JBM, Slutsky AS. Tidal ventilation at low airway pressure can augment lung injury. Am J Respir Crit Care Med 1994; 149: 1327-1334.
24.- Webb HH, Tierney DF. Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressure: protection by positive end-expiratory pressure. Am Rev Respir Dis 1974; 110: 556-565.
25.- Tremblay L, Valenza F, Ribeiro SP, Li J, Slutsky AS. Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 1997; 99: 944-952.
26.- ARDSNet. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 2000; 342:1301–8.
27.- Gordo-Vial F,Gómez-Tello V,Palencia-Herrejón E, Latour-Pérez J. Impact of two new studies on the results of a meta-analysis on the application of high PEEP in patients with acute respiratory distress syndrome. Med Intensiva 2008; 32: 316–7.
28.- Cereda M, Foti G, Musch G, Sparacino ME, Pesenti A. Positive end-expiratory pressure prevent the loss of respiratory compliance during low tidal volumen ventilation in acute lung injury patient Chest.1996; 109: 480–5.
29.- Marini JJ, Amato MB. Lung recruitment during ARDS. En: Vincent JL, editor.Up date in intensive care and emergency medicine. Berlin; Heidelberg; NewYork: Springer-Verlag; 1998. p. 236–57.
30.- Dall’Ava-Santucci J, Armaganidis A, Brunet F, Dhainaut JF, Chelucci GL, Monsallier JF, et al. Causes of error of respiratory pressure volumen curves in paralyzed subjects. J Appl Physiol 1988; 64: 42–9.
31.- Grasso S, Fanelli V, Cafarelli A, Anaclerio R, Amabile M, Ancona G, et al. Effects of high versus low positive end-expiratory pressure in acute respiratory distress syndrome. Am J Respir Crit Care Med 2005; 171: 1002–8.
32.- Borges JB, Caramez MPR, Gaudencio AMAS. Lung recruitment at airway pressures beyond 40 cm H2O: Physiology, mechanics and spiral CT analysis. Am J Respir Crit Care Med 2000; 161: A48 (abstract).
33.- Marini JJ, Amato MB. Lung recruitment during ARDS Minerva Anestesiol 2000; 66: 314-9.
34.- Kolton M, Cattran CB, Kent G. Oxygenation during high-frequency ventilation compared with conventional mechanical ventilation in two models of lung injury. Anesth Analg 1982; 61: 323-332.
35.- McCulloch PR, Forkert PG, Froese AB. Lung volume maintenance prevents lung injury during high frequency oscillatory ventilation in surfactant-deficient rabbits. Am Rev Respir Dis 1988; 137:1185-1192.
36.- Vázquez de Anda G, Hartog A, Verbrugge SJC. The open lung concept: pressure controlled ventilation is as effective as high frequency oscillatory ventilation in improving gas exchange and lung mechanics in surfactant-deficient animals. Intensive Care Med 1999; 25:990-996.
37.- Rimensberger PC, Pache JC, McKerlie C. Lung recruitment and lung volume maintenance: a strategy for improving oxygenation and presenting lung injury during both conventional mechanical ventilation and high frequency oscillation. Intensive Care Med 2000; 26:745-752.
38.- Gattinoni L, Pelosi P, Crotti S, Valenza F. Effects of positive end-expiratory pressure on regional distribution of tidal volume and recruitment in adult respiratory distress syndrome. Am J Respir Crit Care Med 1995; 151:1807-1814.
39.- Amato MB, Barbas CS, Medeiros DM, et al. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 1998; 338:347-54.
40.- Lapinsky SF, Aubin M, Mehta N. Safety and efficacy of a sustained inflation for alveolar recruitment in adults with respiratory failure. Intensive Care Med 1999; 25:1297-1301.
41.- Medoff BD, Harris RS, Kesselman H, Venegas J, Amato MB, Hess D. Use of recruitment maneuvers and high-positive end-expiratory pressure in a patient with acute respiratory distress syndrome. Crit Care Med 2000; 28:1210-6.
55 a la 61
42.- Goodman LR, Fumagalli R, Tagliabue P, Ferrario M, Gattinoni L, Pesenti A. Adult respiratory distress syndrome due to pulmonary and extrapulmonary causes: CT, clinical, and functional correlation. Radiology 1999; 213:545-552.
43.- Kacmarek RM, Villar J, Sulemanji D, et al. Open Lung Approach for the Acute Respiratory Distress Syndrome: A Pilot, Randomized Controlled Trial. Crit Care Med 2016; 44: 32–42.
44.- Wyszogrodski I, Kyei-Aboagye K, Tauesch HW, Jr., Avery ME. Surfactant inactivation by hyperventilation: conservation by end-expiratory pressure. J Appl Physiol 1975; 38:461-466.
45.- Amato MBP, Meade MO, Barbas CSV, Stewart TE. Mortality in 2 trials involving lung protective ventilation strategies. Am J Respir Crit Care Med 1999; 159:A51
46.- Medoff BD, Harris RS, Kesselman H, Venegas J, Amato MB, Hess D. Use of recruitment maneuvers and high-positive end-expiratory pressure in a patient with acute respiratory distress syndrome. Crit Care Med 2000; 28:1210-6.
47.- Borges J, Caramez M, Gaudêncio A, et al. Lung recruitment at airway pressures beyond 40 cmH2O: physiology, mechanics and spiral CT analysis. American Journal of respiratory and Critical Care Medicine 2000; 161:A48.
48.- Lachmann B. Open up the lung and keep the lung open. Intensive Care Med 1992; 18:319-321.
49.- Meyer EC, Barbas CSV, Grunauer MA, et al. PEEP at Pflex cannot guarantee a fully open lung after a high-pressure recruiting maneuver in ARDS patients. Am J Respir Crit Care Med 1998; 157: A694.
50.- Hickling KG. Best compliance during a decremental, but not incremental, positive end-expiratory pressure trial is related to open lung positive end-expiratory pressure: A mathematical model of acute respiratory distress síndrome lungs. Am J Respir Crit Care Med 2000; 66: 314–9.
51.- Borges JB, Costa ELV, Beraldo MA, Gomes S, Volpe MS, Carvalho CRR, et al. A bedside and real-time monitor to detect airspace collapse in patients with ALI/ARDS [abstract]. Am J Respir Crit Care Med 2006: 3: A377.
52.- Beraldo MA, Reske A, Borges JB, Costa ELV, Gomes S, Volpe MS, et al. PEEP titration by EIT (electric impedance tomography): Correlation with multislice CT [abstract]. Am J Respir Crit Care Med. 2006: 3: A64.
53.- Albaiceta GM, Piacentini E, Villagrá A, López-Aguilar J, Taboada F, Blanch L. Application of continuous positive airway pressure to trace static pressure-volume curves of the respiratory system Crit Care Med 2003; 31: 2514–9. 56.
54.- Albaiceta GM, Taboada F, Parra D, Luyando LH, Calvo J, Menéndez R, et al.Tomographic study of the inflection points of the pressure-volume curve in acute lung injury Am J Respir Crit CareMed 2004; 170: 1066-72.
55.- Brower RG, Lanken PN, MacIntyre N, Matthay MA, Morris A, Ancukiewicz M, et al. Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 2004; 351: 327–36.
56.- Musch G, Bellani G, Vidal Melo MF, Harris RS, Winkler T, Schroeder T, et al. Relation between shunt, aeration, and perfusión in experimental acute lung injury. Am J Respir Crit Care Med 2008; 177: 292-300.
57.- Cressoni M, Caironi P, Polli F, Carlesso E, Chiumello D, Cadringher P, et al. Anatomical and functional intrapulmonary shunt in acute respiratory distress syndrome. Crit Care Med 2008; 36: 669-75.
58.- Suárez-Sipmann F, Bohm SH, Tusman G, Pesch T, Thamm O, Reissmann H, et al. Use of dynamic compliance for open lung positive end-expiratory pressure titration in an experimental study. Crit Care Med 2007; 35: 214-21.
59.- Pestaña D, Royo C, Hernández-Gancedo C, Martínez-Casanova E, Criado A. Hemodynamic variability caused by pressure- volume plotting and alveolar recruitment maneuvers in patients with adult respiratory distress syndrome. Rev Esp Anestesiol Reanim 2008; 55: 348-54.
60.- Carvalho CRR , Barbas CSV, Medeiros DM, Magaldi RB, Filho GL, Kairalla RA, et al. Temporal hemodynamic effects of permissive hipercapnia associated with ideal PEEP in ARDS. Am J Respir Crit Care Med.1997; 156: 1458-66.
61.- Tusman G, et al. Alveolar recruitment during mechanical ventilation. Where are we in 2013? Trends in Anesthesia and Critical Care 2013; 3: 238-245