Effects of black currants anthocyanins on hemodynamics of aqueous humor and peripheral blood circulation.

Main Article Content

Hiroshi Ohguro Yayoi Marumo Meguni Watanabe Syuichiro Inatomi

Abstract

Purpose: In our previous studies, we demonstrated the beneficial effects that black currant anthocyanins (BCACs) have on glaucomatous optic neuropathy (GON) through their possible mechanisms toward reactivity to endothelin-1 (ET-1). The purpose of the current study is to examine the influence of BCACs on peripheral blood circulation as well as aqueous humor (AH) circulation.

Methods: In our examination of peripheral blood circulation, responses toward finger cooling stimulation were monitored by a thermography in 8 healthy subjects receiving one time administration of BCACs (130 mg) and 5 separate subjects receiving BCACs daily (50 mg/day) for one week. To examine aqueous humor (AH) circulation, AH outflow resistance or AH production was evaluated by means of a Weight on-off test at baseline and again at week 1, 2 or 3 of BCACs administration.

Results: Compared to pre-administration, recovery of the surface temperature of the middle finger was achieved more rapidly after both the one time BCAC intake and when they were administered over 7 days. Upon administration of BCACs for three weeks, the IOP drop rate and IOP recovery time increased and shortened, respectively.

Conclusions: Our present results indicate that BCACs intake effectively suppresses cold-induced vasospasms and modulates AH circulation by a possible ET-1 mediated mechanism.

Article Details

How to Cite
OHGURO, Hiroshi et al. Effects of black currants anthocyanins on hemodynamics of aqueous humor and peripheral blood circulation.. Medical Research Archives, [S.l.], v. 5, n. 8, aug. 2017. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/1506>. Date accessed: 15 jan. 2025.
Keywords
black currant anthocyanins, glaucoma, endothelin
Section
Research Articles

References

1. Shields, MB. An overview of glaucoma. In: Shields MB, editor. Textbook of glaucoma. 4th. ed. Baltimore, Maryland: Williams & Wilkins;1988;1-2.
2. Almasieh M, Wilson AM, Morquette B, Cueva Vargas JL, Di Polo A. The molecular basis of retinal ganglion cell death in glaucoma. Prog Retin Eye Res. 2012;31:152-81.
3. Collaborative Normal-Tension Glaucoma Study Group. The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma. Am J Ophthalmol. 1998;126:498-505.
4. The AGIS Investigators. The Advanced Glaucoma Intervention Study (AIGIS):7. The relationship between control of intraocular pressure and visual field deterioration. Am J Ophthalmol. 2000;130:429-40.
5. Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP, et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120:701-13.
6. Kitazawa Y, Shirato S, Yamamoto T. Optic disc hemorrhage in low-tension glaucoma. Ophthalmology. 1986;93:853-7.
7. Leske MC, Heijl A, Hussein M, Bengtsson B, Hyman L, Komaroff E. Early Manifest Glaucoma Trial Group; Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Arch Ophthalmol. 2003;121:48-56.
8. Barry CJ, Cooper RL, Eikelboom RH. Optic disc hemorrhages and vascular abnormalities in a glaucoma population. Aust N Z Ophthalmol. 1997;25:137-44.
9. Hirota A, Mishima HK, Kiuchi Y. Incidence of retinal vein occlusion at the glaucoma clinic of Hiroshima University. Ophthalmologica. 1997;211:288-91.
10. Sato EA, Ohtake Y, Shinoda K, Mashima Y, Kimura I. Decreased blood flow at neuroretinal rim of optic nerve head corresponds with visual field deficit in eyes with normal tension glaucoma. Graefes Arch Clin Exp Ophthalmol. 2006;244:795-801.
11. Hafez AS, Bizzarro RLG, Lesk MR. Evaluation of optic nerve head and peripapillary retinal blood flow in glaucoma patients, ocular hypertensive, and normal subjects. Am J Ophthalmol. 2003;136:1022-31.
12. Emre M, Orgul S, Haufschild T, Shaw SG, Flammer J. Increased plasma endothelin-1 levels in patients with progressive open angle glaucoma. Br J Ophthalmol. 2005;89:60-63.
13. Cellini M, Possati GL, Profazio V, Sbrocca M, Caramazza N, Caramazza R. Color Doppler imaging and plasma levels of endothelin-1 in low-tension glaucoma. Acta Ophthalmol Scand. 1997;224:S11-3.
14. Kaiser HJ, Flammer J, Wenk M, Luschur T. Endothelin-1 plasma levels in normal-tension glaucoma. Abnormal response to postural changes. Graefe’s Arch Clin Exp Ophthalmol. 1995;233:484-8.
15. Ohguro I, Ohguro H, Nakazawa M. Study of contribution of low level of plasma endothelin-1 concentration to pathogenesis of glaucomatous optic neuropathy. Hirosaki Med J. 2006;57:59-64.
16. Ohguro I, Yamamoto Y, Takeuchi K, Ohguro H, Matsumoto M, Matsuhashi H. Relation between platelet aggregation rate and pathogenesis of glaucomatous optic neuropathy. Journal of the Eye. 2005;22:669-72.                          
17. Nicolela MT, Ferrier SN, Morrison CA, Archibald ML, LeVatte TL, Wallace K, et al. Effects of cold-induced vasospasm in glaucoma: the role of endothelin-1. Invest Ophthalmol Vis Sci. 2003;4:2565-72.
18. Renaud S, de Logeril M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet. 1992;339:1523-6.
19. Kamazawa Y, Kawaguchi K, Takimoto H. Immunomodulating effects of flavonoids on acute and chronic inflammatory responses caused by tumor necrosis factor alpha. Curr Pharma Des. 2006;12:4271-9.
20. Nakaishi H, Matsumoto H, Tominaga S, Hirayama M. Effects of blackcurrant anthocyanoides intake on dark adaptation and VDT work-induced transient refractive alternation in healthy humans. Altern Med Rev. 2000;5:553-62.
21. Matsumoto H, Kamm KE, Stull JT, Azuma H. Delphinidine-3-rutiniside relaxes the bovine ciliary smooth muscle through activation of ETB receptor and NO/cGMP pathway. Exp Eye Res. 2005;80:313-22.
22. Haefliger IO, Flammer J, Bény JL, Lüscher TF. Endothelium-dependent vasoactive modulation in the ophthalmic circulation. Prog Retin Eye Res. 2001; 20:209-25.
23. Ohguro I, Ohguro H, Nakazawa M. Effects of anthocyanins in black currant on retinal blood flow circulation of patients with normal tension glaucoma. A pilot study. Hirosaki Med J. 2007;59:23-32.
24. Ohguro H, Ohguro I, Katai M, Tanaka S. Two-Year Randomized, Placebo-Controlled Study of Black Currant Anthocyanins on Visual Field in Glaucoma. Ophthalmologica. 2012;228:26-35.
25. Yoshida K, Ohguro H. et al. Effects of black currant anthocyanins on glaucomatous optic neuropathy. Sapporo Med J. 2012;81:1-6.
26. Venkataraman ST, Flanagan JG, Hudson C. Vascular reactivity of optic nerve head and retinal blood vessels in glaucoma. Microcirculation. 2010;17:568-81.
27. Yoshida K, Ohguro I, Ohguro H. Black currant anthocyanins Normalized Abnormal levels of Serum Concentrations of Endothelin-1 in patients with glaucoma. J. Ocul Pharmacol Ther. 2013;29:480-487.
28. Chlebicka I, Matusiak Ł, Maj J, Baran E, Szepietowski JC. Freezing fingers syndrome, primary and secondary Raynaud's phenomenon: characteristic features with hand thermography. Acta Derm Venereol. 2013;93:428-32.
29. Ohguro H, Watanabe M, Inatomi S, Umeda K, Ohguro I, A simple method for evaluation of aqueous humor dynamics “A weight on-off test” in patients with glaucoma. Medical Research Archives. 2015;1:22-39.
30. Matsumoto H, Inaba H, Kishi M. Orally administered delphinidin 3-rutinoside and cyanidin 3-rutinoside are directly absorbed in rats and humans and appear in the blood as the intact forms. J Agric Food Chem. 2001;49:1546-51.
31. Matsumoto H, Nakamura Y, Iida H, Ito K, Ohguro H. Comparative assessment of distribution of black currant anthocyanins in rabbit and rat ocular tissues. Exp Eye Res. 2006;83:348-56.
32. Matsumoto H, Nakamura Y, Tachibanaki S, Kawamura S, Hirayama M. Stimulatory effect of cyanidine 3-glycosides on the regeneration of rhodopsin. J Agric Food Chem. 2003;51:3560-3.
33. Iida H, Nakamura Y, Matsumoto H, et al. Effect of black-currant extract on negative lens-induced ocular growth in chicks. Ophthalmic Res. 2010;44:242-50.
34. Oku H, Kida T, Sugiyama T, Hamada J, Sato B, Ikeda T. Possible involvement of endothelin-1 and nitric oxide in the pathogenesis of proliferative diabetic retinopathy. Retina. 2001;21:647-51.
35. Stangos AN, Petropoulos IK, Pournaras JA, Mendrinos E, Pournaras CJ. The vasodilatory effect of juxta-arteriolar microinjection of endothelinA receptor inhibitor in healthy and acute branch retinal vein occlusion minipig retinas. Invest Ophthalmol Vis Sci. 2010;51:2185-90.
36. Feldstein C, Romero C. Role of endothelins in hypertension. Am. J. Ther. 2007;14:147-153.
37. MacCumber MW, D’ Anna SA. Endothelin receptor-binding subtypes in the human retina and choroid. Arch. Ophthalmol. 1994;112:1231-1235.
38. Ripodas A, de Juan J.A, Roldán-Pallarés M, et al. Localization of endothelin-1 mRNA expression and immunoreactivity in the retina and optic nerve from human and porcine eye. Evidence for endothelin-1 expression in astrocytes. Brain Res. 2001;912:137-143.
39. Rosenthal R, Fromm M. Endothelin antagonism as an active principle for glaucoma therapy. Br. J. Pharmacol. 2011;162:806-816.
40. Haque MS, Sugiyama K, Taniguchi T, Kitazawa Y. Effects of BQ-123, an ETA recepter-selective antagonist, on changes of intraocular pressure, blood-aqueous barrier and aqueous prostaglandin concentrations caused by endothelin-1 in rabbit. Jpn. J. Ophthalmol. 1996;40:26-32.
41. Resch H, Karl K, Weigert G, et al. Effect of dual endothelin receptor blockade on ocular blood flow in patients with glaucoma and healthy subjects. Inves.t Ophthalmol. Vis. Sci. 2009;50:358-63.
42. Haque MS, Taniguchi T, Sugiyama K, Okada K, Kitazawa Y. The ocular hypotensive effect of the ETB receptor selective agonist, sarafotoxin S6c, in rabbits. Invest. Ophthalmol. Vis. Sci. 1995;36:804-808.
43. Haque MS, Taniguchi T, Sugiyama K, et al. The effects of ETB receptor-selective agonist on IOP and blood-aqueous barrier in rabit eyes: role of cyclooxygenase products. Jpn. J. Ophthalmol. 1995;39:360-367.

Most read articles by the same author(s)