Challenges for the development of immunotherapy in small-cell lung cancer

Main Article Content

Toshiyuki Minami Yuhei Kinehara Osamu Morimura Hidemi Kitai Eriko Fujimoto Yoshiki Negi Shingo Kanemura Eisuke Shibata Koji Mikami Takashi Yokoi Kozo Kuribayashi Takashi Kijima

Abstract

Small-cell lung cancer (SCLC) is a clinically aggressive cancer, and accounts for 15% of all types of lung cancer. SCLC is characterized by its rapid growth, early dissemination, and easy acquisition of multidrug resistance to chemotherapy. While most of the patients with SCLC are eligible to systemic chemotherapy owing to the presence of distant metastasis at the time of diagnosis, the median survival with the standard chemotherapy is less than 12 months. Numerous clinical trials, including molecular targeted therapy, have been conducted in hopes of developing a novel therapeutic strategy in SCLC, but eventuated disappointed results. Consequently, the standard chemotherapeutic regimen has not changed for three decades. Moreover, clinically beneficial therapeutic strategies for patients with relapsed-SCLC are extremely limited. Thus, effective treatment of SCLC has been leveling off in spite of the recent dramatic progress in the treatment of non-SCLC. Genomic analysis revealed that definitively targetable molecules with oncogenic driver activity were rarely detected


in SCLC. Therefore, immunotherapy rather than molecular targeted therapy is considered to be promising in the improvement of prognosis in patients with SCLC. Immune checkpoint inhibitors (ICIs) such as nivolumab and pembrolizumab have been approved for the treatment of the patients with non-SCLC, and have dramatically improved their prognosis. These ICIs exert antitumor effect via activating adaptive immunity. Some clinical trials have demonstrated promising effects of ICIs in the treatment of relapsed-SCLC. We have reported that trastuzumab, a humanized anti-human epidermal growth factor receptor 2 antibody, could exert remarkable antitumor effects against SCLC mainly through antibody-dependent cell-mediated cytotoxicity (ADCC) in preclinical models and clinical settings. ADCC is commonly recognized as one of the best ways to activate innate immunity. It is essential to clarify how to maximize the benefit of the immunotherapy in order to improve the prognosis of SCLC.

Keywords: immunotherapy, small-cell lung cancer, immune checkpoint inhibitor, antibody dependent cell-mediated cytotoxicity

Article Details

How to Cite
MINAMI, Toshiyuki et al. Challenges for the development of immunotherapy in small-cell lung cancer. Medical Research Archives, [S.l.], v. 6, n. 6, june 2018. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/1817>. Date accessed: 22 nov. 2024. doi: https://doi.org/10.18103/mra.v6i6.1817.
Section
Review Articles

References

1. Früh, M., De Ruysscher, D., Popat, S., Crinò, L., Peters, S., Felip, E. Small-cell lung cancer (SCLC): ESMO Clinical Prac-tice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2013, 24 Suppl 6, vi99-105. doi: 10.1093/annonc/mdt178.
2. Noda, K., Nishiwaki, Y., Kawahara, M., Negoro, S., Sugiura, T., Yokoyama, A., et al. Irinotecan plus cisplatin compared with etoposide plus cisplatin for extensive small-cell lung cancer. N Engl J Med 2002, 346 (2), 85-91. doi: 10.1056/ NEJ-Moa003034.
3. Mamdani, H., Induru, R., Jalal, S. I. Novel therapies in small cell lung cancer. Transl Lung Cancer Res 2015, 4 (5), 533-44. doi: 10.3978/j.issn.2218-6751. 2015.07.20.
4. George, J., Lim, J. S., Jang, S. J., Cun, Y., Ozretić, L., Kong, G., et al. Com-prehensive genomic profiles of small cell lung cancer. Nature 2015, 524 (7563), 47-53. doi: 10.1038/nature14664.
5. Evans, W. K., Shepherd, F. A., Feld, R., Osoba, D., Dang, P., Deboer, G. VP-16 and cisplatin as first-line therapy for small-cell lung cancer. J Clin Oncol 1985, 3 (11), 1471-7. doi: 10.1200/JCO.1985. 3.11.1471.
6. Farkona, S., Diamandis, E. P., Bla-sutig, I. M. Cancer immunotherapy: the beginning of the end of cancer? BMC Med 2016, 14, 73. doi: 10.1186/s12916-016- 0623-5.
7. Borghaei, H., Paz-Ares, L., Horn, L., Spigel, D. R., Steins, M., Ready, N. E., et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Can-cer. N Engl J Med 2015, 373 (17), 1627-39. doi: 10.1056/NEJMoa1507643.
8. Reck, M., Rodríguez-Abreu, D., Robinson, A. G., Hui, R., Csőszi, T., Fülöp, A.; et al. Pembrolizumab versus Chemo-therapy for PD-L1-Positive Non-Small-Cell Lung Cancer. N Engl J Med 2016, 375 (19), 1823-1833. doi: 10.1056/NEJMoa1606774.
9. Chen, D. S., Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity 2013, 39 (1), 1-10. doi: 10.1016/j.immuni.2013.07.012.
10. Katsenelson, N. S., Shurin, G. V., Bykovskaia, S. N., Shogan, J., Shurin, M. R. Human small cell lung carcinoma and car-cinoid tumor regulate dendritic cell matura-tion and function. Mod Pathol 2001, 14 (1), 40-5. doi: 10.1038/modpathol.3880254.
11. He, Y., Rozeboom, L., Rivard, C. J., Ellison, K., Dziadziuszko, R., Yu, H., et al. MHC class II expression in lung cancer. Lung Cancer 2017, 112, 75-80. doi: 10.1016/j.lungcan.2017.07.030.
12. Doyle, A., Martin, W. J., Funa, K., Gazdar, A., Carney, D., Martin, S. E., et al. Markedly decreased expression of class I histocompatibility antigens, protein, and mRNA in human small-cell lung cancer. J Exp Med 1985, 161 (5), 1135-51.
13. Kinehara, Y., Minami, T., Kijima, T., Hoshino, S., Morimura, O., Otsuka, T., et al. Favorable response to trastuzumab plus irinotecan combination therapy in two pa-tients with HER2-positive relapsed small-cell lung cancer. Lung Cancer 2015, 87 (3), 321-5. doi: 10.1016/j.lungcan.2015. 01.003.
14. Torphy, R. J., Schulick, R. D., Zhu, Y. Newly Emerging Immune Checkpoints: Promises for Future Cancer Therapy. Int J Mol Sci 2017, 18 (12). doi: 10.3390/ijms18122642.
15. Pico de Coaña, Y., Choudhury, A., Kiessling, R. Checkpoint blockade for can-cer therapy: revitalizing a suppressed im-mune system. Trends Mol Med 2015, 21 (8), 482-91. doi: 10.1016/j.molmed.2015. 05.005.
16. Assi, H. I., Kamphorst, A. O., Mou-kalled, N. M., Ramalingam, S. S. Immune checkpoint inhibitors in advanced non-small cell lung cancer. Cancer 2018, 124, 248-61. doi: 10.1002/cncr.31105.
17. El-Osta, H., Shahid, K., Mills, G. M., Peddi, P. Immune checkpoint inhibitors: the new frontier in non-small-cell lung cancer treatment. Onco Targets Ther 2016, 9, 5101-16. doi: 10.2147/OTTS.S111209.
18. Antonia, S. J., López-Martin, J. A., Bendell, J., Ott, P. A., Taylor, M., Eder, J. P., et al. Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): a multicentre, open-label, phase 1/2 trial. Lancet Oncol 2016, 17 (7), 883-895. doi: 10.1016/S1470-2045(16)30098-5.
19. von Pawel, J., Jotte, R., Spigel, D. R., O'Brien, M. E., Socinski, M. A., Mezger, J., et al. Randomized phase III trial of amrubicin versus topotecan as second-line treatment for patients with small-cell lung cancer. J Clin Oncol 2014, 32 (35), 4012-9. doi: 10.1200/JCO.2013.54.5392.
20. Ott, P. A., Elez, E., Hiret, S., Kim, D. W., Morosky, A., Saraf, S., et al. P Pembro-lizumab in Patients With Extensive-Stage Small-Cell Lung Cancer: Results From the Phase Ib KEYNOTE-028 Study. J Clin Oncol 2017, 35 (34), 3823-3829. doi: 10.1200/JCO.2017.72.5069.
21. Schultheis, A. M., Scheel, A. H., Ozretić, L., George, J., Thomas, R. K., Ha-gemann, T., et al. PD-L1 expression in small cell neuroendocrine carcinomas. Eur J Cancer 2015, 51 (3), 421-6. doi: 10.1016/j.ejca.2014.12.006.
22. Tsuruoka, K., Horinouchi, H., Goto, Y., Kanda, S., Fujiwara, Y., Nokihara, H., et al. PD-L1 expression in neuroendocrine tumors of the lung. Lung Cancer 2017, 108, 115-120. doi: 10.1016/j.lungcan.2017.03.006.
23. Shukuya, T., Carbone, D. P. Predic-tive Markers for the Efficacy of An-ti-PD-1/PD-L1 Antibodies in Lung Cancer. J Thorac Oncol 2016, 11 (7), 976-88. doi: 10.1016/j.jtho.2016.02.015.
24. Mutation Load Offers Biomarker in SCLC. Cancer Discov 2017, 7 (12), 1361. doi: 10.1158/2159-8290.CD-NB2017-154.
25. Le, D. T., Uram, J. N., Wang, H., Bartlett, B. R., Kemberling, H., Eyring, A. D., et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N Engl J Med 2015, 372 (26), 2509-20. doi: 10.1056/NEJMoa1500596.
26. Rizvi, N. A., Hellmann, M. D., Snyder, A., Kvistborg, P., Makarov, V., Ha-vel, J. J., et al. Cancer immunology. Muta-tional landscape determines sensitivity to PD-1 blockade in non-small cell lung can-cer. Science 2015, 348 (6230), 124-8. doi: 10.1126/science.aaa1348.
27. Pleasance, E. D., Stephens, P. J., O'Meara, S., McBride, D. J., Meynert, A., Jones, D., et al. A small-cell lung cancer genome with complex signatures of tobacco exposure. Nature 2010, 463 (7278), 184-90. doi: 10.1038/nature08629.
28. Gazdar, A. F., Bunn, P. A., Minna, J. D. Small-cell lung cancer: what we know, what we need to know and the path forward. Nat Rev Cancer 2017, 17 (12), 765. doi: 10.1038/nrc.2017.106.
29. Reck, M., Luft, A., Szczesna, A., Havel, L., Kim, S. W., Akerley, W., et al. Phase III Randomized Trial of Ipilimumab Plus Etoposide and Platinum Versus Place-bo Plus Etoposide and Platinum in Exten-sive-Stage Small-Cell Lung Cancer. J Clin Oncol 2016, 34 (31), 3740-3748. doi: 10.1200/JCO.2016.67.6601.
30. Garrido, F., Aptsiauri, N., Doorduijn, E. M., Garcia Lora, A. M., van Hall, T. The urgent need to recover MHC class I in can-cers for effective immunotherapy. Curr Opin Immunol 2016, 39, 44-51. doi: 10.1016/j.coi.2015.12.007.
31. Wan, S., Pestka, S., Jubin, R. G., Lyu, Y. L., Tsai, Y. C., Liu, L. F. Chemo-therapeutics and radiation stimulate MHC class I expression through elevated interfe-ron-beta signaling in breast cancer cells. PLoS One 2012, 7 (3), e32542. doi: 10.1371/journal.pone.0032542.
32. Majem, M., Rudin, C. M. Small-cell lung cancer in the era of immunotherapy. Transl Lung Cancer Res 2017, 6 (Suppl 1), S67-S70. doi: 10.21037/tlcr.2017.10.06.
33. Marin-Acevedo, J. A., Soyano, A. E., Dholaria, B., Knutson, K. L., Lou, Y. Can-cer immunotherapy beyond immune checkpoint inhibitors. J Hematol Oncol 2018, 11 (1), 8. doi: 10.1186/s13045-017- 0552-6.
34. Brezicka, T., Bergman, B., Olling, S., Fredman, P. Reactivity of monoclonal antibodies with ganglioside antigens in human small cell lung cancer tissues. Lung Cancer 2000, 28 (1), 29-36.
35. Yao, T. J., Meyers, M., Livingston, P. O., Houghton, A. N., Chapman, P. B. Im-munization of melanoma patients with BEC2-keyhole limpet hemocyanin plus BCG intradermally followed by intravenous booster immunizations with BEC2 to induce anti-GD3 ganglioside antibodies. Clin Cancer Res 1999, 5 (1), 77-81.
36. Grant, S. C., Kris, M. G., Houghton, A. N., Chapman, P. B. Long survival of patients with small cell lung cancer after adjuvant treatment with the anti-idiotypic antibody BEC2 plus Bacillus Cal-mette-Guérin. Clin Cancer Res 1999, 5 (6), 1319-23.
37. Giaccone, G., Debruyne, C., Felip, E., Chapman, P. B., Grant, S. C., Millward, M., et al. Phase III study of adjuvant vacci-nation with Bec2/bacille Calmette-Guerin in responding patients with limited-disease small-cell lung cancer (European Organisa-tion for Research and Treatment of Cancer 08971-08971B; Silva Study). J Clin Oncol 2005, 23 (28), 6854-64. doi: 10.1200/JCO.2005.17.186.
38. Chada, S., Mhashilkar, A., Roth, J. A., Gabrilovich, D. Development of vac-cines against self-antigens: the p53 para-digm. Curr Opin Drug Discov Devel 2003, 6 (2), 169-73.
39. Antonia, S. J., Mirza, N., Fricke, I., Chiappori, A., Thompson, P., Williams, N., et al. Combination of p53 cancer vaccine with chemotherapy in patients with exten-sive stage small cell lung cancer. Clin Can-cer Res 2006, 12 (3 Pt 1), 878-87. doi: 10.1158/1078-432.CCR-05-2013.
40. Sakamoto, S., Yamada, T., Terazaki, Y., Yoshiyama, K., Sugawara, S., Takamori, S., et al. Feasibility Study of Personalized Peptide Vaccination for Advanced Small Cell Lung Cancer. Clin Lung Cancer 2017, 18 (6), e385-e394. doi: 10.1016/j.cllc.2017. 03.011.
41. West, E. J., Scott, K. J., Jennings, V. A., Melcher, A. A. Immune activation by combination human lymphokine-activated killer and dendritic cell therapy. Br J Can-cer 2011, 105 (6), 787-95. doi: 10.1038/ bjc.2011.290.
42. Lagadec, P. F., Saraya, K. A., Balk-will, F. R. Human small-cell lung-cancer cells are cytokine-resistant but NK/LAK-sensitive. Int J Cancer 1991, 48 (2), 311-7.
43. Tsuchida, T., Yamane, H., Ochi, N., Tabayashi, T., Hiraki, A., Nogami, N., et al. Cytotoxicity of activated natural killer cells and expression of adhesion molecules in small-cell lung cancer. Anticancer Res 2012, 32 (3), 887-92.
44. Ding, X., Cao, H., Chen, X., Jin, H., Liu, Z., Wang, G., et al. Cellular immuno-therapy as maintenance therapy prolongs the survival of the patients with small cell lung cancer. J Transl Med 2015, 13, 158. doi: 10.1186/s12967-015-0514-0.
45. Huang, J., Kan, Q., Lan; Zhao, X., Zhang, Z., Yang, S., Li, H., et al. Chemo-therapy in combination with cyto-kine-induced killer cell transfusion: An effective therapeutic option for patients with extensive stage small cell lung cancer. Int Immunopharmacol 2017, 46, 170-177. doi: 10.1016/j.intimp.2016.12.005.
46. Schmidt-Wolf, I. G., Negrin, R. S., Kiem, H. P., Blume, K. G., Weissman, I. L. Use of a SCID mouse/human lymphoma model to evaluate cytokine-induced killer cells with potent antitumor cell activity. J Exp Med 1991, 174 (1), 139-49.
47. Franceschetti, M., Pievani, A., Bor-leri, G., Vago, L., Fleischhauer, K., Golay, J., et al. Cytokine-induced killer cells are terminally differentiated activated CD8 cytotoxic T-EMRA lymphocytes. Exp He-matol 2009, 37 (5), 616-628.e2. doi: 10.1016/j.exphem.2009.01.010.
48. Rajasekaran, N., Chester, C., Yone-zawa, A., Zhao, X., Kohrt, H. E. Enhance-ment of antibody-dependent cell mediated cytotoxicity: a new era in cancer treatment. Immunotargets Ther 2015, 4, 91-100. doi: 10.2147/ITT.S61292.
49. Wang, W., Erbe, A. K., Hank, J. A., Morris, Z. S., Sondel, P. M. NK Cell-Mediated Antibody-Dependent Cellu-lar Cytotoxicity in Cancer Immunotherapy. Front Immunol 2015, 6, 368. doi: 10.3389/fimmu.2015.00368.
50. Liu, L., Shao, X., Gao, W., Bai, J., Wang, R., Huang, P., et al. The role of hu-man epidermal growth factor receptor 2 as a prognostic factor in lung cancer: a me-ta-analysis of published data. J Thorac On-col 2010, 5 (12), 1922-32.
51. Minami, T., Kijima, T., Otani, Y., Kohmo, S., Takahashi, R., Nagatomo, I., et al. HER2 as therapeutic target for over-coming ATP-binding cassette transpor-ter-mediated chemoresistance in small cell lung cancer. Mol Cancer Ther 2012, 11 (4), 830-41. doi: 10.1158/1535-7163. MCT-11-0884.
52. Minami, T., Kijima, T., Kohmo, S., Arase, H., Otani, Y., Nagatomo, I., et al. Overcoming chemoresistance of small-cell lung cancer through stepwise HER2-targeted antibody-dependent cell-mediated cytotoxicity and VEGF-targeted antiangiogenesis. Sci Rep 2013, 3, 2669. doi: 10.1038/srep02669.
53. Barber, D. F., Faure, M., Long, E. O. LFA-1 contributes an early signal for NK cell cytotoxicity. J Immunol 2004, 173 (6), 3653-9.
54. Bryceson, Y. T., March, M. E., Ljunggren, H. G., Long, E. O. Activation, coactivation, and costimulation of resting human natural killer cells. Immunol Rev 2006, 214, 73-91. doi: 10.1111/j.1600-065X.2006.00457.x.
55. Morimura, O., Minami, T., Kijima, T., Koyama, S., Otsuka, T., Kinehara, Y., et al. Trastuzumab emtansine suppresses the growth of HER2-positive small-cell lung cancer in preclinical models. Biochem Bio-phys Res Commun 2017, 488 (4), 596-602. doi: 10.1016/j.bbrc.2017.05.090.
56. Irani, V., Guy, A. J., Andrew, D., Beeson, J. G., Ramsland, P. A., Richards, J. S. Molecular properties of human IgG sub-classes and their implications for designing therapeutic monoclonal antibodies against infectious diseases. Mol Immunol 2015, 67 (2 Pt A), 171-82. doi: 10.1016/j.molimm. 2015.03.255.
57. Rudin, C. M., Pietanza, M. C., Bau-er, T. M., Ready, N., Morgensztern, D., Glisson, B. S., et al. Rovalpituzumab tesi-rine, a DLL3-targeted antibody-drug con-jugate, in recurrent small-cell lung cancer: a first-in-human, first-in-class, open-label, phase 1 study. Lancet Oncol 2017, 18 (1), 42-51. doi: 10.1016/S1470-2045(16)30565-4.