The Role of the Mitogen-Activated Protein Kinase (MAPK) Signaling Pathway in Cancer

Main Article Content

Sajedeh Lotfaliansaremi Michael Sabio Stephen Comwell Peter Tolias


The Ras-ERK mitogen-activated protein kinase (MAPK) pathway is hyperactive in >30% of all human cancers, prompting the development of RAS, RAF, MEK, and ERK inhibitors. The identification of intracellular signaling cascades, which promote the growth and survival of cancer cells, is critical for developing targeted cancer therapeutics aimed at blocking these signals. Currently, there are various FDA-approved drugs to inhibit RAF and MEK mutations for cancer treatment, but patients rapidly develop resistance to these drugs within several months, necessitating the need to develop new drugs against other targets in the MAPK pathway. Developing RAS inhibitors has been challenging due to the high affinity of RAS for its natural ligands (GDP and GTP) and the lack of a druggable binding cavity. As an alternative to targeting RAS, ERK inhibitors, which have also been shown to work on RAF/MEK-resistant cell lines, can block the activation of ERK and act as an effective cancer treatment, causing tumor regression.  However, to maximize therapeutic effectiveness, it seems unlikely that any monotherapy would be particularly useful.  Future treatment strategies should be designed on a patient-by-patient basis to ensure the most rapid reduction in tumor growth and the minimization of off-target effects by using a combination of two (or more) inhibitors within this MAPK pathway that lead to tumor regression and positive patient outcomes.

Keywords: mitogen-activated protein kinases, MAPKs, cancer, signaling, feedback regulation, activators, amplifiers, negative feedback, therapeutic targets, RAS, RAF, BRAF, BRAFV600E, MEK, ERK, RTK, NF1

Article Details

How to Cite
LOTFALIANSAREMI, Sajedeh et al. The Role of the Mitogen-Activated Protein Kinase (MAPK) Signaling Pathway in Cancer. Medical Research Archives, [S.l.], v. 8, n. 4, apr. 2020. ISSN 2375-1924. Available at: <>. Date accessed: 14 june 2024. doi:
Review Articles


1. Pearson G, Robinson F, Beers Gibson T, et al, Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev. 2001;22(2):153–183. doi:10.1210/edrv.22.2.0428.
2. Lee S, Rauch J, Kolch W. Targeting MAPK signaling in cancer: mechanisms of drug resistance and sensitivity. Int J Mol Sci. 2020;21(3):E1102. doi:10.3390/ijms21031102.
3. Hanks SK, Hunter T. Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J. 1995;9(8):576–596. doi:10.1096/fasebj.9.8.7768349.
4. Hunter T. Protein kinase classification. Methods Enzymol. 1991;200:3–37. doi:10.1016/0076-6879(91)00125-g.
5. Liu F, Yang X, Geng M, Huang M. Targeting ERK, an Achilles’ Heel of the MAPK pathway, in cancer therapy. Acta Pharm Sin B. 2018;8(4):552–562. doi:10.1016/j.apsb.2018.01.008.
6. McCubrey JA, Milella M, Tafuri A, et al. Targeting the Raf/MEK/ERK pathway with small-molecule inhibitors. Curr Opin Investig Drugs. 2008;9(6):614–630.
7. Cooper JA, Sefton BM, Hunter T. Diverse mitogenic agents induce the phosphorylation of two related 42,000-dalton proteins on tyrosine in quiescent chick cells. Mol Cell Biol. 1984;4(1):30–7. doi:10.1128/mcb.4.1.30.
8. Ray LB, Sturgill TW. Characterization of insulin-stimulated microtubule-associated protein kinase. Rapid isolation and stabilization of a novel serine/threonine kinase from 3T3-L1 cells. J Biol Chem. 1988;263(25):12721–12727.
9. Ahn NG, Krebs EG. Evidence for an epidermal growth factor-stimulated protein kinase cascade in Swiss 3T3 cells. Activation of serine peptide kinase activity by myelin basic protein kinases in vitro. J Biol Chem. 1990;265(20):11495–11501.
10. Merchant M, Moffat J, Schaefer G, et al. Combined MEK and ERK inhibition overcomes therapy-mediated pathway reactivation in RAS mutant tumors. PLoS One. 2017;12(10):e0185862. doi:10.1371/journal.pone.0185862. Corrections in PLoS One. 2018;13(1):e0192059. doi:10.1371/journal.pone.0192059.
11. Lewis TS, Shapiro PS, Ahn NG. Signal transduction through MAP kinase cascades. Adv Cancer Res. 1998;74:49–139. doi:10.1016/s0065-230x(08)60765-4.
12. Braicu C, Buse M, Busuioc C, et al. A Comprehensive Review on MAPK: A Promising Therapeutic Target in Cancer. Cancers (Basel). 2019;11(10):pii-E1618. doi:10.3390/cancers11101618.
13. Yaeger R, Corcoran RB. Targeting Alterations in the RAF–MEK Pathway. Cancer Discov. 2019;9(3):329–341. doi:10.1158/2159-8290.CD-18-1321.
14. Li L, Feng J, Wu T, et al. Inhibitors of KRAS G12C. World Intellectual Property Organization. 2015; Patent application WO 2015/054572 A1.
15. Milburn MV, Tong L, deVos AM, et al. Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins. Science. 1990;247(4945):939–945. doi:10.1126/science.2406906.
16. McCain J. The MAPK (ERK) pathway: investigational combinations for the treatment of BRAF-mutated metastatic melanoma. P T. 2013;38(2):96–108.
17. Ryan MB, Corcoran RB. Therapeutic strategies to target RAS-mutant cancers. Nat Rev Clin Oncol. 2018;15(11):709–720. doi:10.1038/s41571-018-0105-0.
18. Hayes TK, Der CJ. Mutant and wild-type Ras: co-conspirators in cancer. Cancer Discov. 2013;3(1):24–26. doi:10.1158/2159-8290.CD-12-0521.
19. Jarvis, LM. Have drug hunters finally cracked KRas? C&EN. 2016;94(23):28–33.
20. Yaeger R, Yao Z, Hyman DM, et al. Mechanisms of acquired resistance to BRAF V600E inhibition in colon cancers converge on RAF dimerization and are sensitive to its inhibition. Cancer Res. 2017;77(23):6513–6523. doi:10.1158/0008-5472.CAN-17-0768.
21. Simanshu DK, Nissley DV, McCormick F. RAS proteins and their regulators in human disease. Cell. 2017;170(1):17–33. doi:10.1016/j.cell.2017.06.009.
22. McDonald ER 3rd, de Weck A, Schlabach MR, et al.; Project DRIVE: a compendium of cancer dependencies and synthetic lethal relationships uncovered by large-scale, deep RNAi screening. Cell. 2017;170(3):577–592.e10. doi:10.1016/j.cell.2017.07.005.
23. Yuen JS, Sim MY, Sim HG, et al. Combination of the ERK inhibitor AZD6244 and low-dose sorafenib in a xenograft model of human renal cell carcinoma. Int J Oncol. 2012;41(2):712–720. doi:10.3892/ijo.2012.1494.
24. Karoulia Z, Gavathiotis E, Poulikakos PI. New perspectives for targeting RAF kinase in human cancer. Nat Rev Cancer. 2017;17(11):676–691. doi:10.1038/nrc.2017.79.
25. Ni D, Li X, He X, Zhang H, Zhang J, Lu S. Drugging K-RasG12C through covalent inhibitors: Mission possible? Pharmacol Ther. 2019;202:1–17. doi:10.1016/j.pharmthera.2019.06.007.
26. Ghosh AK, Samanta I, Mondal A, Liu WR. Covalent inhibition in drug discovery. ChemMedChem. 2019;14(9):889–906. doi:10.1002/cmdc.201900107.
27. Ledford H. Cancer: the Ras renaissance. Nature. 2015;520(7547):278–280. doi:10.1038/520278a.
28. Lim SM, Westover KD, Ficarro SB, et al. Therapeutic targeting of oncogenic K-Ras by a covalent catalytic site inhibitor. Angew Chem Int Ed Engl. 2014;53(1):199–204. doi:10.1002/anie.201307387.
29. Nagasaka M, Li Y, Sukari A, Ou SI, Al-Hallak MN, Azmi AS. KRAS G12C Game of Thrones, which direct KRAS inhibitor will claim the iron throne? Cancer Treat Rev. 2020;84:101974. doi:10.1016/j.ctrv.2020.101974.
30. Davies H, Bignell GR, Cox C, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–954. doi:10.1038/nature00766.
31. Huleihel M, Goldsborough M, Cleveland J, Gunnell M, Bonner T, Rapp UR. Characterization of murine A-raf, a new oncogene related to the v-raf oncogene. Mol Cell Biol. 1986;6(7):2655–2662. doi:10.1128/mcb.6.7.2655.
32. Jakob JA, Bassett RL Jr, Ng CS, et al. NRAS mutation status is an independent prognostic factor in metastatic melanoma. Cancer. 2012 Aug 15;118(16):4014–4023. doi:10.1002/cncr.26724.
33. Karoulia Z, Wu Y, Ahmed TA, et al. An integrated model of RAF inhibitor action predicts inhibitor activity against oncogenic BRAF signaling. Cancer Cell. 2016;30(3):485–498. doi:10.1016/j.ccell.2016.06.024. Corrections in Cancer Cell. 2016;30(3):501-503. doi:10.1016/j.ccell.2016.08.008.
34. Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N. RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild type BRAF. Nature. 2010;464(7287):427-30. doi:10.1038/nature08902.
35. Pratilas CA, Taylor BS, Ye Q, et al. V600EBRAF is associated with disabled feedback inhibition of RAF–MEK signaling and elevated transcriptional output of the pathway. Proc Natl Acad Sci USA. 2009;106(11):4519–4524. doi:10.1073/pnas.0900780106.
36. Lito P, Pratilas CA, Joseph EW, et al. Relief of profound feedback inhibition of mitogenic signaling by RAF inhibitors attenuates their activity in BRAFV600E melanomas. Cancer Cell. 2012;22(5):668–682. doi:10.1016/j.ccr.2012.10.009.
37. Yao Z, Torres NM, Tao A, et al. BRAF mutants evade ERK-dependent feedback by different mechanisms that determine their sensitivity to pharmacologic inhibition. Cancer Cell. 2015;28(3):370–383. doi: 10.1016/j.ccell.2015.08.001.
38. Yao Z, Yaeger R, Rodrik-Outmezguine VS, et al. Tumours with class 3 BRAF mutants are sensitive to the inhibition of activated RAS. Nature. 2017;548(7666):234–238. doi:10.1038/nature23291.
39. Ikenoue T, Hikiba Y, Kanai F, et al. Functional Analysis of Mutations within the Kinase Activation Segment of B-Raf in Human Colorectal Tumors. Cancer Res. 2003;63(23):8132–8137.
40. Andreadi C, Cheung LK, Giblett S, et al. The intermediate-activity (L597V)BRAF mutant acts as an epistatic modifier of oncogenic RAS by enhancing signaling through the RAF/MEK/ERK pathway. Genes Dev. 2012;26(17):1945–1958. doi:10.1101/gad.193458.112.
41. Yu HA, Suzawa K, Jordan E, et al. Concurrent alterations in EGFR-mutant lung cancers associated with resistance to EGFR kinase inhibitors and characterization of MTOR as a mediator of resistance. Clin Cancer Res. 2018 Jul 1;24(13):3108–3118. doi:10.1158/1078-0432.CCR-17-2961.
42. Wan PT, Garnett MJ, Roe SM, et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell. 2004;116(6):855–867. doi:10.1016/s0092-8674(04)00215-6.
43. Murugan AK, Grieco M, Tsuchida N. RAS mutations in human cancers: roles in precision medicine. Semin Cancer Biol. 2019;59:23–35. doi:10.1016/j.semcancer.2019.06.007.
44. Nieto P, Ambrogio C, Esteban-Burgos L, et al. A Braf kinase-inactive mutant induces lung adenocarcinoma. Nature. 2017;548(7666):239–243. doi:10.1038/nature23297.
45. Cremolini C, Di Bartolomeo M, Amatu A, et al. BRAF codons 594 and 596 mutations identify a new molecular subtype of metastatic colorectal cancer at favorable prognosis. Ann Oncol. 2015;26(10):2092–2097. doi:10.1093/annonc/mdv290.
46. Wilhelm S, Carter C, Lynch M, Lowinger T, DumasJ, Smith RA, et al. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nat Rev Drug Discov. 2006;5(10):835–844. doi:10.1038/nrd2130. Corrections in Nat Rev Drug Discov. 2007;6(2):126.
47. Seger R, Ahn NG, Posada J, et al. Purification and characterization of MAP kinase activator(s) from epidermal growth factor stimulated A431 cells. J Biol Chem. 1992;267(20):14373–14381.
48. Brown NA, Furtado LV, Betz BL, et al. High prevalence of somatic MAP2K1 mutations in BRAF V600E-negative Langerhans cell histiocytosis. Blood. 2014;124(10):1655–1658. doi:10.1182/blood-2014-05-577361.
49. Yuan J, Ng WH, Tian Z, et al. Activating mutations in MEK1 enhance homodimerization and promote tumorigenesis. Sci Signal. 2018;11(554),pii:eaar6795. doi:10.1126/scisignal.aar6795.
50. Ohren JF, Chen H, Pavlovsky A, et al. Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition. Nat Struct Mol Biol. 2004;11(12):1192–1197. doi:10.1038/nsmb859.
51. Fukuda M, Gotoh I, Gotoh Y, Nishida E. Cytoplasmic localization of mitogen-activated protein kinase kinase directed by its NH2-terminal, leucine-rich short amino acid sequence, which acts as a nuclear export signal. J Biol Chem. 1996;271(33):20024–20028. doi:10.1074/jbc.271.33.20024.
52. Scholl FA, Dumesic PA, Barragan DI, Charron J, Khavari PA.. MEK1/2 gene dosage determines tissue response to oncogenic RAS signaling in the skin. Oncogene. 2009;28(12):1485–1495. doi:10.1038/onc.2008.459.
53. Gao Y, Chang MT, McKay D, et al. Allele-specific mechanisms of activation of MEK1 mutants determine their properties. Cancer Discov. 2018;8(5):648–661. doi:10.1158/2159-8290.CD-17-1452.
54. Strickler JH, Loree JM, Ahronian LG, et al. Genomic landscape of cell-free DNA in patients with colorectal cancer. Cancer Discov. 2018;8(2):164–173. doi:10.1158/2159-8290.CD-17-1009.
55. Hazar-Rethinam M, Kleyman M, Han GC, et al. Convergent therapeutic strategies to overcome the heterogeneity of acquired resistance in BRAFV600E colorectal cancer. Cancer Discov. 2018;8(4):417–427. doi:10.1158/2159-8290.CD-17-1227.
56. Russo M, Siravegna G, Blaszkowsky LS, et al. Tumor heterogeneity and lesion-specific response to targeted therapy in colorectal cancer. Cancer Discov. 2016;6(2):147–153. doi:10.1158/2159-8290.CD-15-1283.
57. Neuzillet C, Tijeras-Raballand A, de Mestier L, Cros J, Faivre S, Raymond E. MEK in cancer and cancer therapy.Pharmacol Ther. 2014;141(2):160–171. doi:10.1016/j.pharmthera.2013.10.001.
58. Alessi DR1, Cuenda A, Cohen P, Dudley DT, Saltiel AR. PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem. 1995;270(46):27489–27494. doi:10.1074/jbc.270.46.27489.
59. Hatzivassiliou G, Haling JR, Chen H, et al. Mechanism of MEK inhibition determines efficacy in mutant KRAS versus BRAF-driven cancers. Nature. 2013;501(7466):232–236. doi: 10.1038/nature12441.
60. Corcoran RB, Dias-Santagata D, Bergethon K, Iafrate AJ, Settleman J, Engelman JA. BRAF gene amplification can promote acquired resistance to MEK inhibitors in cancer cells harboring the BRAF V600E mutation. Sci Signal. 2010;3(149):ra84. doi:10.1126/scisignal.2001148.
61. Caunt CJ, Sale MJ, Smith PD, Cook SJ. MEK1 and MEK2 inhibitors and cancer therapy: the long and winding road. Nat Rev Cancer. 2015;15(10):577–592. doi:10.1038/nrc4000.
62. Brenan L, Andreev A, Cohen O, et al. Phenotypic Characterization of a Comprehensive Set of MAPK1/ERK2 Missense Mutants. Cell Rep. 2016;17(4):1171–1183. doi:10.1016/j.celrep.2016.09.061.
63. Nishimoto S, Nishida E. MAPK signalling: ERK5 versus ERK1/2. EMBO Rep. 2006 Aug;7(8):782–786. doi:10.1038/sj.embor.7400755.
64. Kumar S, Boehm J, Lee JC. p38 MAP kinases: key signalling molecules as therapeutic targets for inflammatory diseases. Nat Rev Drug Discov. 2003;2(9):717–726. doi:10.1038/nrd1177.
65. Lloyd AC. Distinct functions for ERKs? J Biol. 2006;5(5):13. doi:10.1186/jbiol46.
66. Ramos JW. The regulation of extracellular signal-regulated kinase (ERK) in mammalian cells. Int J Biochem Cell Biol. 2008;40(12):2707–2719. doi:10.1016/j.biocel.2008.04.009.
67. Chambard JC, Lefloch R, Pouysségur J, Lenormand P. ERK implication in cell cycle regulation. Biochim Biophys Acta. 2007;1773(8):1299–1310. do:10.1016/j.bbamcr.2006.11.010.
68. McCubrey JA, Steelman LS, Chappell WH, et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim Biophys Acta. 2007;1773(8):1263–1284. doi:10.1016/j.bbamcr.2006.10.001.
69. Vaidyanathan H, Opoku-Ansah J, Pastorino S, Renganathan H, Matter ML, Ramos JW. ERK MAP kinase is targeted to RSK2 by the phosphoprotein PEA-15. Proc Natl Acad Sci U S A. 2007;104(50):19837–19842. doi:10.1073/pnas.0704514104.
70. Nakano H, Shindo M, Sakon S, et al. Differential regulation of IκB kinase α and β by two upstream kinases, NF-κB-inducing kinase and mitogen-activated protein kinase/ERK kinase kinase-1. Proc Natl Acad Sci U S A. 1998;95(7):3537–3542. doi:10.1073/pnas.95.7.3537.
71. Zhao Q, Lee FS. Mitogen-activated protein kinase/ERK kinase kinases 2 and 3 activate nuclear factor-κB through IκB kinase-α and IκB kinase-β. J Biol Chem. 1999;274(13):8355–8358. doi:10.1074/jbc.274.13.8355.
72. Sturm OE, Orton R, Grindlay J, et al. The mammalian MAPK/ERK pathway exhibits properties of a negative feedback amplifier. Sci Signal. 2010;3(153):ra90. doi:10.1126/scisignal.2001212.
73. Huang L, Fu L. Mechanisms of resistance to EGFR tyrosine kinase inhibitors. Acta Pharm Sin B. 2015;5(5):390–401. doi:10.1016/j.apsb.2015.07.001.
74. Leevers SJ, Paterson HF, Marshall CJ. Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane. Nature. 1994;369(6479):411–414. doi:10.1038/369411a0.
75. Dougherty MK, Müller J, Ritt DA, et al. Regulation of Raf-1 by direct feedback phosphorylation. Mol Cell. 2005;17(2):215–224. doi:10.1016/j.molcel.2004.11.055.
76. Eblen ST, Slack-Davis JK, Tarcsafalvi A, Parsons JT, Weber MJ, Catling AD. Mitogen-activated protein kinase feedback phosphorylation regulates MEK1 complex formation and activation during cellular adhesion.. Mol Cell Biol. 2004;24(6):2308–2317. doi:10.1128/mcb.24.6.2308-2317.2004.
77. Caunt CJ, Keyse SM. Dual-specificity MAP kinase phosphatases (MKPs): shaping the outcome of MAP kinase signalling. FEBS J. 2013;280(2):489–504. doi:10.1111/j.1742-4658.2012.08716.x.
78. Amaral T, Sinnberg T, Meier F, et al. The mitogen-activated protein kinase pathway in melanoma part I - Activation and primary resistance mechanisms to BRAF inhibition. Eur J Cancer. 2017;73:85–92. doi:10.1016/j.ejca.2016.12.010.
79. Morris EJ, Jha S, Restaino CR, et al. Discovery of a novel ERK inhibitor with activity in models of acquired resistance to BRAF and MEK inhibitors. Cancer Discov. 2013;3(7):742–750. doi: 10.1158/2159-8290.CD-13-0070.
80. Foda ZH, Seeliger MA. Kinase inhibitors: an allosteric add-on. Nat Chem Biol. 2014 Oct;10(10):796–797. doi:10.1038/nchembio.1630.
81. Germann UA, Furey BF, Markland W, et al. Targeting the MAPK signaling pathway in cancer: promising preclinical activity with the novel selective ERK1/2 inhibitor BVD-523 (Ulixertinib). Mol Cancer Ther. 2017;16(11):2351–2363. doi:10.1158/1535-7163.MCT-17-0456.
82. Jaiswal BS, Durinck S, Stawiski EW, et al. ERK mutations and amplification confer resistance to ERK-inhibitor therapy. Clin Cancer Res. 2018;24(16):4044–4055. doi:10.1158/1078-0432.CCR-17-3674.

Most read articles by the same author(s)