A Novel Strategy for Identifying Non-covalent KRas Inhibitors Design and Biochemical Characterization of KRas(G12C) Double Mutants for Compound Screening

Main Article Content

Haoshuang Zhao Michael Sabio Sid Topiol Kuo-Sen Huang Naoko Tanaka Wei Chu Ueli Gubler Peter Tolias

Abstract

By analyzing KRas and HRas X-ray structures, we developed a novel strategy that involves the design of a series of “synthetic” or “artificial” KRas mutations, namely T20I, D57E, D57F, T58A, T58V, and G60A, individually introduced into KRas with the G12C natural pathogenic mutation to create double mutants that we would expect to enhance compound binding to the switch II pocket. The goal of using these mutants is to induce greater overall flexibility of the KRas structure to allow the switch II pocket (S-IIP) to open more frequently in the absence of a C12-covalently bound ligand. We developed sensitive assays for the Raf:KRas(GTP) interaction and SOS-driven GDP/GTP exchange to assess these KRas proteins, including the wild-type form, a mutant frequently found in human cancers (G12C), and the “artificial” G12C double mutants. By characterizing these KRas mutants, we hoped to identify at least one mutant that may provide enough flexibility for non-covalent binding to the switch II pocket, thus facilitating future non-covalent compound screening. The results of these assays provide preliminary support that some of the studied mutants demonstrate increased protein flexibility relative to that of KRas(G12C). This strategy of slightly increasing protein flexibility or destabilization through the introduction of selected mutations may be applied to other proteins for which low assay sensitivity is due to transient, high-energy, open-form binding sites.

Keywords: KRas mutations, non-covalent KRas inhibitors, switch II pocket, X-ray crystallography, SOS-driven GDP/GTP exchange, Raf binding activity

Article Details

How to Cite
ZHAO, Haoshuang et al. A Novel Strategy for Identifying Non-covalent KRas Inhibitors. Medical Research Archives, [S.l.], v. 8, n. 6, june 2020. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/2137>. Date accessed: 24 nov. 2024. doi: https://doi.org/10.18103/mra.v8i6.2137.
Section
Research Articles

References

Ostrem JML, Shokat KM, Direct small-molecule inhibitors of KRAS: from structural insights to mechanism-based design. Nat Rev Drug Discov. 2016;15(11):771–785. doi:10.1038/nrd.2016.139.
2. Vetter IR, Wittinghofer A. The guanine nucleotide-binding switch in three dimensions. Science. 2001; 294(5545):1299–1304. doi:10.1126/science.1062023.
3. Zenonos K, Kyprianou K. RAS signaling pathways, mutations and their role in colorectal cancer. World J Gastrointest Oncol. 2013; 5(5):97–101. doi:10.4251/wjgo.v5.i5.97.
4. Rajalingam K, Schreck R, Rapp UR, Albert Š. Ras oncogenes and their downstream targets. Biochim Biophys Acta. 2007;1773(8):1177–1195. doi:10.1016/j.bbamcr.2007.01.012.
5. Raepple D, von Lintig F, Zemojtel T, et al. Determination of Ras-GTP and Ras-GDP in patients with acute myelogenous leukemia (AML), myeloproliferative syndrome (MPS), juvenile myelomonocytic leukemia (JMML), acute lymphocytic leukemia (ALL), and malignant lymphoma: assessment of mutational and indirect activation. Ann Hematol. 2009;88(4):319–324. doi:10.1007/s00277-008-0593-6.
6. Maurer T, Garrenton LS, Oh A, et al. Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity. Proc Natl Acad Sci USA. 2012;109(14):5299–5304. doi:10.1073/pnas.1116510109.
7. Ahmadian MR, Stege P, Scheffzek K, et al. Confirmation of the arginine-finger hypothesis for the GAP-stimulated GTP-hydrolysis reaction of Ras. Nat Struct Biol. 1997;4(9):686–689. doi:10.1038/nsb0997-686.
8. Burns MC, Sun Q, Daniels RN, et al. Approach for targeting Ras with small molecules that activate SOS-mediated nucleotide exchange. Proc Natl Acad Sci USA. 2014;111(9):3401–3406; doi:10.1073/pnas.1315798111.
9. Kolch W. Meaningful relationships: the regulation of the Ras/Raf/MEK/ERK pathway by protein interactions. Biochem J. 2000;351(2);289–305. doi:10.1042/bj3510289.
10. Glaysher S, Bolton LM, Johnson P, Torrance C, Cree IA. Activity of EGFR, mTOR and PI3K inhibitors in an isogenic breast cell line model. BMC Res Notes. 2014;7(397):1–7. doi:10.1186/1756-0500-7-397.
11. Cosmic, v88, https://cancer.sanger.ac.uk/cosmic; last accessed on October 28, 2019.
12. Hunter JC, Manandhar A, Carrasco MA, Gurbani D, Gondi S, Westover KD. Biochemical and Structural Analysis of Common Cancer-Associated KRAS Mutations. Mol Cancer Res. 2015;13(9):1325–1335. doi:10.1158/1541-7786.MCR-15-0203.
13. Scheffzek K, Ahmadian MR, Kabsch W, et al. The Ras-RasGAP complex: Structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science. 1997;277(5324):333–338. doi:10.1126/science.277.5324.333.
14. Kotting C, Kallenbach A, Suveyzdis Y, Wittinghofer A, Gerwert K. The GAP arginine finger movement into the catalytic site of Ras increases the activation entropy. Proc Natl Acad Sci USA. 2008;105(17):6260–6265. doi:10.1073/pnas.0712095105.
15. Papke B, Der CJ. Drugging RAS: Know the enemy. Science. 2017;355(6330):1158–1163. doi:10.1126/science.aam7622.
16. Maurer T, Garrenton LS, Oh A, et al. Small-molecule ligands bind to a distinct pocket in Ras and inhibit SOS-mediated nucleotide exchange activity. Proc Natl Acad Sci USA. 2012;109(14):5299–5304. doi:10.1073/pnas.1116510109.
17. Shima F, Yoshikawa Y, Ye M, et al. In silico discovery of small-molecule Ras inhibitors that display antitumor activity by blocking the Ras–effector interaction. Proc Natl Acad Sci USA. 2013;110(20):8182–8187. doi:10.1073/pnas.1217730110.
18. Ostrem JM, Peters U, Sos ML, Wells JA, Shokat KM. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature. 2013;503(7477):548–551. doi:10.1038/nature12796.
19. Patricelli MP, Janes MR, Li L-S, et al. Selective inhibition of oncogenic KRAS output with small molecules targeting the inactive state. Cancer Discov. 2016;6(3):316–329. doi:10.1158/2159-8290.CD-15-1105.7
20. Janes MR, Zhang J, Li L-S, et al. Targeting KRAS mutant cancers with a covalent G12C-specific inhibitor. Cell. 2018;172(3):578–589.e17. doi:10.1016/j.cell.2018.01.006.
21. Uniprot, the Universal Protein Resource, https://www.uniprot.org/; last accessed on October 28, 2019.
22. GenScript, 860 Centennial Ave. Piscataway, NJ 08854, USA, https://www.genscript.com/; last accessed on October 28, 2019.
23. Agilent, 5301 Stevens Creek Blvd. Santa Clara, CA 95051, USA, https://www.agilent.com/; last accessed on October 28, 2019.
24. Thermo Fisher Scientific, https://www.thermofisher.com/us/en/home.html; last accessed on October 28, 2019.
25. MilliporeSigma, 3050 Spruce St. St. Louis, MO 63103, USA, https://www.sigmaaldrich.com/united-states.html; last accessed on October 28, 2019.
26. Qiagen, https://www.qiagen.com/us/; last accessed on October 28, 2019.
27. GE Healthcare Life Sciences, https://www.gelifesciences.com/en/us/about-us; last accessed on October 28, 2019.
28. Bio-Rad, 2000 Alfred Nobel Drive, Hercules, California 94547, USA, https://www.bio-rad.com/featured/en/bradford-assay.html; last accessed on October 28, 2019.
29. PerkinElmer, 68 Elm Street, Hopkinton, MA 01748, USA, http://www.perkinelmer.com/; last accessed on October 28, 2019.
30. GraphPad Software, 2365 Northside Drive, Suite 560, San Diego, CA 92108, USA, [email protected].
31. Columbia Biosciences, 4985 Winchester Boulevard, Frederick, MD 21703, USA, https://columbiabiosciences.com/; last accessed on October 28, 2019.
32. Schrödinger Release 2016-1; Maestro, version 10.5.014; Schrödinger, LLC: New York, NY, 2016.
33. Berman HM, Westbrook J, Feng Z, et al. The Protein Data Bank. Nucleic Acids Res. 2000;28(1):235–242; the URL of the RCSB PDB is www.rcsb.org. doi:10.1093/nar/28.1.235.
34. Huang R, Southall N, Wang Y, et al. The NCGC pharmaceutical collection: a comprehensive resource of clinically approved drugs enabling repurposing and chemical genomics. Sci Transl Med. 2011;3(80):80ps16. doi:10.1126/scitranslmed.3001862.
35. Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des. 2013;27(3):221–234. doi:10.1007/s10822-013-9644-8.
36. Ganguly AK, Wang Y-S, Pramanik BN, et al. Interaction of a novel GDP exchange inhibitor with the Ras protein. Biochemistry. 1998;37(45):15631–15637. doi:10.1021/bi9805691.
37. Shima F, Ijiri Y, Muraoka S, et al. Structural basis for conformational dynamics of GTP-bound Ras protein. J Biol Chem. 2010;285(29):22696–22705. doi:10.1074/jbc.M110.125161.
38. Cox AD, Fesik SW, Kimmelman AC, Luo J, Der CJ. Drugging the undruggable RAS: Mission Possible? Nat Rev Drug Discov. 2014;13(11):828–851. doi:10.1038/nrd4389.
39. Ford B, Skowronek K, Boykevisch S, Bar-Sagi D, Nassar N. Structure of the G60A Mutant of Ras: Implications for The Dominant Negative Effect. J Biol Chem. 2005;280(27):25697–25705. doi:10.1074/jbc.M502240200.
40. Lito P, Solomon M, Li L-S, Hansen R, Rosen N. Allele-specific inhibitors inactivate mutant KRAS G12C by a trapping mechanism. Science. 2016;351(6273):604–608. doi:10.1126/science.aad6204.
41. Hansen R, Peters U, Babbar A, et al. The reactivity-driven biochemical mechanism of covalent KRASG12C inhibitors. Nat Struct Mol Biol. 2018;25(6):454–462. doi:10.1038/s41594-018-0061-5.
42. Statsyuk AV. Let K-Ras activate its own inhibitor. Nat Struct Mol Biol. 2018;25(6):435–437. doi:10.1038/s41594-018-0066-0.

Most read articles by the same author(s)