An In Vitro Study Determining the anti-inflammatory activities of sinapinic acid-containing extracts generated from Irish rapeseed meal

Main Article Content

Leah Quinn Kenneth R. Scott Stephen P. Finn Maria Hayes Steven G. Gray


Sinapinic acid (SA) has been shown to possess various bioactive properties including anti-diabetic, anti-inflammatory and histone deacetylase inhibitory activities. However, the amount obtained from our diet is insufficient to produce beneficial effects on health. Therefore, isolating this bioactive phenolic from a natural source, such as rapeseed meal, could generate extracts containing concentrated amounts of SA which could be consumed as a functional food ingredient to prevent health-related disease, particularly inflammation.         

Inflammation is a multi-faceted pathology, which plays a role in numerous diseases including cardiovascular disease, diabetes, arthritis and cancer. Current therapies such as non-steroidal anti-inflammatories (NSAIDs) are associated with various adverse side effects, with the result being an increase in research aiming to identify natural compounds which possess anti-inflammatory activity. In this work, an in vitro study assessed the anti-inflammatory activities of two sinapinic acid-containing extracts on human-derived peripheral blood mononuclear cells (PBMCs). Both extracts were found to significantly reduce the levels of key pro-inflammatory cytokines including TNF-alpha, IL-12 and IL-6. Importantly, these extracts were found to be more potent than commercial SA in terms of their anti-inflammatory activities. Results demonstrate the potential of these extracts as anti-inflammatory agents.

Keywords: inflammation, rapeseed, sinapinic acid, TNF-alpha, cytokine

Article Details

How to Cite
QUINN, Leah et al. An In Vitro Study Determining the anti-inflammatory activities of sinapinic acid-containing extracts generated from Irish rapeseed meal. Medical Research Archives, [S.l.], v. 8, n. 10, oct. 2020. ISSN 2375-1924. Available at: <>. Date accessed: 25 june 2024. doi:
Research Articles


1. Chen L, Deng H, Cui H, et al. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget. Jan 23 2018;9(6):7204-7218. doi:10.18632/oncotarget.23208
2. Yang L, Guo H, Li Y, et al. Oleoylethanolamide exerts anti-inflammatory effects on LPS-induced THP-1 cells by enhancing PPARalpha signaling and inhibiting the NF-kappaB and ERK1/2/AP-1/STAT3 pathways. Sci Rep. Oct 10 2016;6:34611. doi:10.1038/srep34611
3. Bijlsma JW, Berenbaum F, Lafeber FP. Osteoarthritis: an update with relevance for clinical practice. Lancet. Jun 18 2011;377(9783):2115-26. doi:10.1016/s0140-6736(11)60243-2
4. Wang T, He C. Pro-inflammatory cytokines: The link between obesity and osteoarthritis. Cytokine Growth Factor Rev. Dec 2018;44:38-50. doi:10.1016/j.cytogfr.2018.10.002
5. Singh UP, Singh NP, Murphy EA, et al. Chemokine and cytokine levels in inflammatory bowel disease patients. Cytokine. Jan 2016;77:44-9. doi:10.1016/j.cyto.2015.10.008
6. Wongrakpanich S, Wongrakpanich A, Melhado K, Rangaswami J. A Comprehensive Review of Non-Steroidal Anti-Inflammatory Drug Use in The Elderly. Aging Dis. Feb 2018;9(1):143-150. doi:10.14336/ad.2017.0306
7. Ambriz-Pérez DL, Leyva-López N, Gutierrez-Grijalva EP, Heredia JB. Phenolic compounds: Natural alternative in inflammation treatment. A Review. Cogent Food & Agriculture. 2016/12/31 2016;2(1):1131412. doi:10.1080/23311932.2015.1131412
8. Cherng YG, Tsai CC, Chung HH, Lai YW, Kuo SC, Cheng JT. Antihyperglycemic action of sinapic acid in diabetic rats. J Agric Food Chem. Dec 11 2013;61(49):12053-9. doi:10.1021/jf403092b
9. Senawong T, Misuna S, Khaopha S, et al. Histone deacetylase (HDAC) inhibitory and antiproliferative activities of phenolic-rich extracts derived from the rhizome of Hydnophytum formicarum Jack.: sinapinic acid acts as HDAC inhibitor. BMC Complement Altern Med. Sep 22 2013;13:232. doi:10.1186/1472-6882-13-232
10. Yun KJ, Koh DJ, Kim SH, et al. Anti-inflammatory effects of sinapic acid through the suppression of inducible nitric oxide synthase, cyclooxygase-2, and proinflammatory cytokines expressions via nuclear factor-kappaB inactivation. J Agric Food Chem. Nov 12 2008;56(21):10265-72. doi:10.1021/jf802095g
11. Quinn L, Gray SG, Meaney S, Finn S, McLoughlin P, Hayes M. Extraction and Quantification of Sinapinic Acid from Irish Rapeseed Meal and Assessment of Angiotensin-I Converting Enzyme (ACE-I) Inhibitory Activity. J Agric Food Chem. Aug 16 2017;65(32):6886-6892. doi:10.1021/acs.jafc.7b02670
12. Naczk M, Wanasundara PKJPD, Shahidi F. Facile spectrophotometric quantification method of sinapic acid in hexane-extracted and methanol-ammonia-water-treated mustard and rapeseed meals. Journal of Agricultural and Food Chemistry. 1992/03/01 1992;40(3):444-448. doi:10.1021/jf00015a016
13. Riss TL, Moravec RA, Niles AL, et al. Cell Viability Assays. In: Sittampalam GS, Grossman A, Brimacombe K, et al, eds. Assay Guidance Manual. 2004.
14. Gatla HR, Muniraj N, Thevkar P, Yavvari S, Sukhavasi S, Makena MR. Regulation of Chemokines and Cytokines by Histone Deacetylases and an Update on Histone Decetylase Inhibitors in Human Diseases. Int J Mol Sci. Mar 5 2019;20(5)doi:10.3390/ijms20051110
15. Schnekenburger M, Dicato M, Diederich MF. Anticancer potential of naturally occurring immunoepigenetic modulators: A promising avenue? Cancer. May 15 2019;125(10):1612-1628. doi:10.1002/cncr.32041
16. Nijhuis L, Peeters JGC, Vastert SJ, van Loosdregt J. Restoring T Cell Tolerance, Exploring the Potential of Histone Deacetylase Inhibitors for the Treatment of Juvenile Idiopathic Arthritis. Front Immunol. 2019;10:151. doi:10.3389/fimmu.2019.00151
17. Gray SG. Perspectives on epigenetic-based immune intervention for rheumatic diseases. Arthritis Res Ther. Mar 14 2013;15(2):207. doi:10.1186/ar4167
18. Gray SG. Epigenetic-based immune intervention for rheumatic diseases. Epigenomics. Apr 2014;6(2):253-71. doi:10.2217/epi.13.87
19. Zhang Q, Hu JX, Kui X, et al. Sinapic Acid Derivatives as Potential Anti-Inflammatory Agents: Synthesis and Biological Evaluation. Iran J Pharm Res. Fall 2017;16(4):1405-1414.
20. Gray SG, De Meyts P. Role of histone and transcription factor acetylation in diabetes pathogenesis. Diabetes Metab Res Rev. Sep-Oct 2005;21(5):416-33. doi:10.1002/dmrr.559
21. Mankan AK, Lawless MW, Gray SG, Kelleher D, McManus R. NF-kappaB regulation: the nuclear response. J Cell Mol Med. Apr 2009;13(4):631-43. doi:10.1111/j.1582-4934.2009.00632.x
22. Mathiessen A, Conaghan PG. Synovitis in osteoarthritis: current understanding with therapeutic implications. Arthritis Res Ther. Feb 2 2017;19(1):18. doi:10.1186/s13075-017-1229-9
23. Urman A, Taklalsingh N, Sorrento C, McFarlane IM. Inflammation beyond the Joints: Rheumatoid Arthritis and Cardiovascular Disease. Scifed J Cardiol. 2018;2(3)
24. Russell RI. Non-steroidal anti-inflammatory drugs and gastrointestinal damage-problems and solutions. Postgrad Med J. Feb 2001;77(904):82-8. doi:10.1136/pmj.77.904.82
25. Ogata A, Kato Y, Higa S, Yoshizaki K. IL-6 inhibitor for the treatment of rheumatoid arthritis: A comprehensive review. Mod Rheumatol. Mar 2019;29(2):258-267. doi:10.1080/14397595.2018.1546357
26. Du G, Song J, Du L, et al. Chemical and pharmacological research on the polyphenol acids isolated from Danshen: A review of salvianolic acids. Adv Pharmacol. 2020;87:1-41. doi:10.1016/bs.apha.2019.12.004
27. Moon CY, Ku CR, Cho YH, Lee EJ. Protocatechuic aldehyde inhibits migration and proliferation of vascular smooth muscle cells and intravascular thrombosis. Biochem Biophys Res Commun. Jun 22 2012;423(1):116-21. doi:10.1016/j.bbrc.2012.05.092
28. Ye T, Xiong D, Li Y, et al. Inhibition of nuclear factor kappa B as a mechanism of Danshensu during Toll-like receptor 2-triggered inflammation in macrophages. Int Immunopharmacol. Jun 2020;83:106419. doi:10.1016/j.intimp.2020.106419
29. Li XX, Zheng X, Liu Z, et al. Cryptotanshinone from Salvia miltiorrhiza Bunge (Danshen) inhibited inflammatory responses via TLR4/MyD88 signaling pathway. Chin Med. 2020;15:20. doi:10.1186/s13020-020-00303-3
30. Wu H, Wang J, Zhao Q, Ding Y, Zhang B, Kong L. Protocatechuic acid inhibits proliferation, migration and inflammatory response in rheumatoid arthritis fibroblast-like synoviocytes. Artif Cells Nanomed Biotechnol. Dec 2020;48(1):969-976. doi:10.1080/21691401.2020.1776307
31. Li Q, Wu Y, Guo X, et al. Protocatechuic acid supplement alleviates allergic airway inflammation by inhibiting the IL-4Rα-STAT6 and Jagged 1/Jagged2-Notch1/Notch2 pathways in allergic asthmatic mice. Inflamm Res. Jul 15 2020;doi:10.1007/s00011-020-01379-1
32. Choi JR, Kim JH, Lee S, Cho EJ, Kim HY. Protective effects of protocatechuic acid against cognitive impairment in an amyloid beta-induced Alzheimer's disease mouse model. Food Chem Toxicol. Jul 14 2020:111571. doi:10.1016/j.fct.2020.111571
33. Zheng J, Li Q, He L, et al. Protocatechuic Acid Inhibits Vulnerable Atherosclerotic Lesion Progression in Older Apoe-/- Mice. J Nutr. May 1 2020;150(5):1167-1177. doi:10.1093/jn/nxaa017
34. Fang X, Liu Y, Lu J, et al. Protocatechuic aldehyde protects against isoproterenol-induced cardiac hypertrophy via inhibition of the JAK2/STAT3 signaling pathway. Naunyn Schmiedebergs Arch Pharmacol. Dec 2018;391(12):1373-1385. doi:10.1007/s00210-018-1556-7
35. Kong BS, Im SJ, Lee YJ, et al. Vasculoprotective Effects of 3-Hydroxybenzaldehyde against VSMCs Proliferation and ECs Inflammation. PLoS One. 2016;11(3):e0149394. doi:10.1371/journal.pone.0149394
36. Zhang J, Ma M, Qin D, et al. Lung morphometry changes in prevention of airway remodeling by protocatechuic aldehyde in asthmatic mice. Int J Clin Exp Med. 2015;8(5):6890-901.
37. Hasanzadeh S, Read MI, Bland AR, Majeed M, Jamialahmadi T, Sahebkar A. Curcumin: an inflammasome silencer. Pharmacol Res. May 25 2020;159:104921. doi:10.1016/j.phrs.2020.104921
38. Banez MJ, Geluz MI, Chandra A, et al. A systemic review on the antioxidant and anti-inflammatory effects of resveratrol, curcumin, and dietary nitric oxide supplementation on human cardiovascular health. Nutr Res. Jun 2020;78:11-26. doi:10.1016/j.nutres.2020.03.002
39. Fernández-Lázaro D, Mielgo-Ayuso J, Seco Calvo J, Córdova Martínez A, Caballero García A, Fernandez-Lazaro CI. Modulation of Exercise-Induced Muscle Damage, Inflammation, and Oxidative Markers by Curcumin Supplementation in a Physically Active Population: A Systematic Review. Nutrients. Feb 15 2020;12(2)doi:10.3390/nu12020501
40. Breuss JM, Atanasov AG, Uhrin P. Resveratrol and Its Effects on the Vascular System. Int J Mol Sci. Mar 27 2019;20(7)doi:10.3390/ijms20071523
41. Ruhee RT, Suzuki K. The Integrative Role of Sulforaphane in Preventing Inflammation, Oxidative Stress and Fatigue: A Review of a Potential Protective Phytochemical. Antioxidants (Basel). Jun 13 2020;9(6)doi:10.3390/antiox9060521
42. Ohishi T, Goto S, Monira P, Isemura M, Nakamura Y. Anti-inflammatory Action of Green Tea. Antiinflamm Antiallergy Agents Med Chem. 2016;15(2):74-90. doi:10.2174/1871523015666160915154443
43. Margină D, Ungurianu A, Purdel C, et al. Analysis of the intricate effects of polyunsaturated fatty acids and polyphenols on inflammatory pathways in health and disease. Food Chem Toxicol. Jul 5 2020;143:111558. doi:10.1016/j.fct.2020.111558
44. Jimenez-Lopez C, Fraga-Corral M, Carpena M, et al. Agriculture waste valorisation as a source of antioxidant phenolic compounds within a circular and sustainable bioeconomy. Food Funct. Jun 24 2020;11(6):4853-4877. doi:10.1039/d0fo00937g
45. Miettinen TA, Puska P, Gylling H, Vanhanen H, Vartiainen E. Reduction of serum cholesterol with sitostanol-ester margarine in a mildly hypercholesterolemic population. N Engl J Med. Nov 16 1995;333(20):1308-12. doi:10.1056/nejm199511163332002
46. FDA. eCFR 21: Food and Drugs. 2:101.83.
47. Intelligence M. European Nutraceutical Food Market- Growth, Trends and Forecast (2019-2024). 2018.