Improving visualization of colorectal metastatic cancer using laparoscopic fluorescence-guided surgery
Main Article Content
Abstract
Extensive surgical treatment for peritoneal metastases originating from colorectal cancer provokes high morbidity and perioperative mortality rates, therefore careful and objective patient selection prior to such a procedure is crucial. Tumor-specific fluorescence-guided laparoscopy is a potential imaging technique for the improvement of patient selection. The aim is to select the patient that benefits the most of extensive and valuable surgical treatment, in terms of disease-free survival, overall survival and quality of life. Cancer-upregulated proteins and tumor-specific biological processes with matching fluorescence imaging agents could guide the surgeon to improved identification of malignant tissue during diagnostic laparoscopy and for detection of non-visible small tumor lesions during cytoreductive surgery.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Klaver YL, Lemmens VE, Nienhuijs SW, Luyer MD, de Hingh IH. Peritoneal carcinomatosis of colorectal origin: Incidence, prognosis and treatment options. World J Gastroenterol. 2012;18(39):5489-5494. doi: 10.3748/wjg.v18.i39.5489 [doi].
3. Jafari MD, Halabi WJ, Stamos MJ, et al. Surgical outcomes of hyperthermic intraperitoneal chemotherapy: Analysis of the american college of surgeons national surgical quality improvement program. JAMA Surg. 2014;149(2):170-175. doi: 10.1001/jamasurg.2013.3640 [doi].
4. Kooijman BJL, Hentzen, J E K R, van der Hilst, C S, et al. Impact of extent of disease on 1-year healthcare costs in patients who undergo cytoreductive surgery with hyperthermic intraperitoneal chemotherapy for colorectal peritoneal metastases: Retrospective observational cohort study. BJS Open. 2020. doi: 10.1002/bjs5.50320 [doi].
5. Verwaal VJ, Bruin S, Boot H, van Slooten G, van Tinteren H. 8-year follow-up of randomized trial: Cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy in patients with peritoneal carcinomatosis of colorectal cancer. Ann Surg Oncol. 2008;15(9):2426-2432. doi: 10.1245/s10434-008-9966-2 [doi].
6. Sugarbaker PH. Peritonectomy procedures. Surg Oncol Clin N Am. 2003;12(3):703-27, xiii. doi: S1055-3207(03)00048-6 [pii].
7. Glehen O, Cotte E, Schreiber V, Sayag-Beaujard AC, Vignal J, Gilly FN. Intraperitoneal chemohyperthermia and attempted cytoreductive surgery in patients with peritoneal carcinomatosis of colorectal origin. Br J Surg. 2004;91(6):747-754. doi: 10.1002/bjs.4473 [doi].
8. Elias D, Gilly F, Boutitie F, et al. Peritoneal colorectal carcinomatosis treated with surgery and perioperative intraperitoneal chemotherapy: Retrospective analysis of 523 patients from a multicentric french study. J Clin Oncol. 2010;28(1):63-68. doi: 10.1200/JCO.2009.23.9285 [doi].
9. Mohamed F, Cecil T, Moran B, Sugarbaker P. A new standard of care for the management of peritoneal surface malignancy. Curr Oncol. 2011;18(2):84. doi: 10.3747/co.v18i2.663 [doi].
10. Shan LL, Saxena A, Shan BL, Morris DL. Quality of life after cytoreductive surgery and hyperthermic intra-peritoneal chemotherapy for peritoneal carcinomatosis: A systematic review and meta-analysis. Surg Oncol. 2014;23(4):199-210. doi: 10.1016/j.suronc.2014.10.002 [doi].
11. Harlaar NJ, Koller M, de Jongh SJ, et al. Molecular fluorescence-guided surgery of peritoneal carcinomatosis of colorectal origin: A single-centre feasibility study. Lancet Gastroenterol Hepatol. 2016;1(4):283-290. doi: S2468-1253(16)30082-6 [pii].
12. Boogerd LSF, Hoogstins CES, Schaap DP, et al. Safety and effectiveness of SGM-101, a fluorescent antibody targeting carcinoembryonic antigen, for intraoperative detection of colorectal cancer: A dose-escalation pilot study. Lancet Gastroenterol Hepatol. 2018;3(3):181-191. doi: S2468-1253(17)30395-3 [pii].
13. Schaap DP, de Valk KS, Deken MM, et al. Carcinoembryonic antigen-specific, fluorescent image-guided cytoreductive surgery with hyperthermic intraperitoneal chemotherapy for metastatic colorectal cancer. Br J Surg. 2020;107(4):334-337. doi: 10.1002/bjs.11523 [doi].
14. Kusamura S, Baratti D, Zaffaroni N, et al. Pathophysiology and biology of peritoneal carcinomatosis. World J Gastrointest Oncol. 2010;2(1):12-18. doi: 10.4251/wjgo.v2.i1.12 [doi].
15. Hentzen, J E K R, Constansia RDN, Been LB, et al. Diagnostic laparoscopy as a selection tool for patients with colorectal peritoneal metastases to prevent a non-therapeutic laparotomy during cytoreductive surgery. Ann Surg Oncol. 2020;27(4):1084-1093. doi: 10.1245/s10434-019-07957-w [doi].
16. Elias D, Gilly F, Boutitie F, et al. Peritoneal colorectal carcinomatosis treated with surgery and perioperative intraperitoneal chemotherapy: Retrospective analysis of 523 patients from a multicentric french study. J Clin Oncol. 2010;28(1):63-68. doi: 10.1200/JCO.2009.23.9285 [doi].
17. Jayakrishnan TT, Zacharias AJ, Sharma A, Pappas SG, Gamblin TC, Turaga KK. Role of laparoscopy in patients with peritoneal metastases considered for cytoreductive surgery and hyperthermic intraperitoneal chemotherapy (HIPEC). World J Surg Oncol. 2014;12:270-270. doi: 10.1186/1477-7819-12-270 [doi].
18. van Dam GM, Themelis G, Crane LM, et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-alpha targeting: First in-human results. Nat Med. 2011;17(10):1315-1319. doi: 10.1038/nm.2472 [doi].
19. Vahrmeijer AL, Hutteman M, van der Vorst, J R, van de Velde, C J, Frangioni JV. Image-guided cancer surgery using near-infrared fluorescence. Nat Rev Clin Oncol. 2013;10(9):507-518. doi: 10.1038/nrclinonc.2013.123 [doi].
20. Rosenthal EL, Warram JM, de Boer E, et al. Safety and tumor specificity of cetuximab-IRDye800 for surgical navigation in head and neck cancer. Clin Cancer Res. 2015;21(16):3658-3666. doi: 10.1158/1078-0432.CCR-14-3284 [doi].
21. Voskuil FJ, Steinkamp PJ, Zhao T, et al. Exploiting metabolic acidosis in solid cancers using a tumor-agnostic pH-activatable nanoprobe for fluorescence-guided surgery. Nat Commun. 2020;11(1):3257-4. doi: 10.1038/s41467-020-16814-4 [doi].
22. Voskuil FJ, de Jongh SJ, Hooghiemstra WTR, et al. Fluorescence-guided imaging for resection margin evaluation in head and neck cancer patients using cetuximab-800CW: A quantitative dose-escalation study. Theranostics. 2020;10(9):3994-4005. doi: 10.7150/thno.43227 [doi].
23. Handgraaf HJM, Sibinga Mulder BG, Shahbazi Feshtali S, et al. Staging laparoscopy with ultrasound and near-infrared fluorescence imaging to detect occult metastases of pancreatic and periampullary cancer. PLoS One. 2018;13(11):e0205960. doi: 10.1371/journal.pone.0205960 [doi].
24. Liberale G, Vankerckhove S, Caldon MG, et al. Fluorescence imaging after indocyanine green injection for detection of peritoneal metastases in patients undergoing cytoreductive surgery for peritoneal carcinomatosis from colorectal cancer: A pilot study. Ann Surg. 2016;264(6):1110-1115. doi: 10.1097/SLA.0000000000001618 [doi].
25. Lamberts LE, Koch M, de Jong JS, et al. Tumor-specific uptake of fluorescent bevacizumab-IRDye800CW microdosing in patients with primary breast cancer: A phase I feasibility study. Clin Cancer Res. 2017;23(11):2730-2741. doi: 10.1158/1078-0432.CCR-16-0437 [doi].
26. Tiernan JP, Perry SL, Verghese ET, et al. Carcinoembryonic antigen is the preferred biomarker for in vivo colorectal cancer targeting. Br J Cancer. 2013;108(3):662-667. doi: 10.1038/bjc.2012.605 [doi].
27. Cascio S, Ferla R, D'Andrea A, et al. Expression of angiogenic regulators, VEGF and leptin, is regulated by the EGF/PI3K/STAT3 pathway in colorectal cancer cells. J Cell Physiol. 2009;221(1):189-194. doi: 10.1002/jcp.21843 [doi].
28. Metildi CA, Hoffman RM, Bouvet M. Fluorescence-guided surgery and fluorescence laparoscopy for gastrointestinal cancers in clinically-relevant mouse models. Gastroenterol Res Pract. 2013;2013:290634. doi: 10.1155/2013/290634 [doi].
29. Terwisscha van Scheltinga, A G, van Dam GM, Nagengast WB, et al. Intraoperative near-infrared fluorescence tumor imaging with vascular endothelial growth factor and human epidermal growth factor receptor 2 targeting antibodies. J Nucl Med. 2011;52(11):1778-1785. doi: 10.2967/jnumed.111.092833 [doi].
30. Koller M, Qiu SQ, Linssen MD, et al. Implementation and benchmarking of a novel analytical framework to clinically evaluate tumor-specific fluorescent tracers. Nat Commun. 2018;9(1):3739-y. doi: 10.1038/s41467-018-05727-y [doi].
31. Steinkamp PJ, Pranger BK, Li M, et al. Fluorescence-guided visualization of soft tissue sarcomas by targeting vascular endothelial growth factor-A: A phase 1 single-center clinical trial. J Nucl Med. 2020. doi: jnumed.120.245696 [pii].