The heterogeneity and therapeutic resistance of glioblastoma

Main Article Content

Karen J.L.C. Karottki Aleena Azam Petra Hamerlik


Over the past decades, there has been an increasing use of molecular biology and genetic approaches in the assessment and management of adult gliomas, overall improving our understanding of the disease biology and behavior. Despite of these advances, maximal therapeutic intervention, as well as numerous new drugs entering clinical trials, the prognosis of malignant gliomas remains dismal. In this review, we provide an overview of the recent advances in the classification system, major molecular aberrations relevant to the biology of malignant gliomas, and standard as well as experimental treatment strategies. In addition, we discuss the complexity of this deadly disease, emphasizing the challenges associated with the enormously high degree of heterogeneity including cellular hierarchies at the inter- and intra-patient level.

Article Details

How to Cite
KAROTTKI, Karen J.L.C.; AZAM, Aleena; HAMERLIK, Petra. The heterogeneity and therapeutic resistance of glioblastoma. Medical Research Archives, [S.l.], n. 3, june 2015. ISSN 2375-1924. Available at: <>. Date accessed: 22 mar. 2023.
Glioblastoma; Heterogeneity; Cancer Stem Cells, Therapeutic Resistance
Review Articles


8. References

(2008). Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061-1068.

Agnihotri, S., Aldape, K. D., and Zadeh, G. (2014). Isocitrate dehydrogenase status and molecular subclasses of glioma and glioblastoma. Neurosurgical focus 37, E13.

Bainbridge, M. N., Armstrong, G. N., Gramatges, M. M., Bertuch, A. A., Jhangiani, S. N., Doddapaneni, H., Lewis, L., Tombrello, J., Tsavachidis, S., Liu, Y., et al. (2015). Germline mutations in shelterin complex genes are associated with familial glioma. Journal of the National Cancer Institute 107, 384.

Bao, S., Wu, Q., McLendon, R. E., Hao, Y., Shi, Q., Hjelmeland, A. B., Dewhirst, M. W., Bigner, D. D., and Rich, J. N. (2006). Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444, 756-760.

Bar, E. E. (2011). Glioblastoma, cancer stem cells and hypoxia. Brain Pathol 21, 119-129.
Barraud, P., Stott, S., Mollgard, K., Parmar, M., and Bjorklund, A. (2007). In vitro characterization of a human neural progenitor cell coexpressing SSEA4 and CD133. Journal of neuroscience research 85, 250-259.

Bartkova, J., Hamerlik, P., Stockhausen, M. T., Ehrmann, J., Hlobilkova, A., Laursen, H., Kalita, O., Kolar, Z., Poulsen, H. S., Broholm, H., et al. (2010). Replication stress and oxidative damage contribute to aberrant constitutive activation of DNA damage signalling in human gliomas. Oncogene 29, 5095-5102.

Batista, L. F., Roos, W. P., Christmann, M., Menck, C. F., and Kaina, B. (2007). Differential sensitivity of malignant glioma cells to methylating and chloroethylating anticancer drugs: p53 determines the switch by regulating xpc, ddb2, and DNA double-strand breaks. Cancer research 67, 11886-11895.

Beier, C. P., Schmid, C., Gorlia, T., Kleinletzenberger, C., Beier, D., Grauer, O., Steinbrecher, A., Hirschmann, B., Brawanski, A., Dietmaier, C., et al. (2009). RNOP-09: pegylated liposomal doxorubicine and prolonged temozolomide in addition to radiotherapy in newly diagnosed glioblastoma--a phase II study. BMC cancer 9, 308.

Beier, D., Schulz, J. B., and Beier, C. P. (2011). Chemoresistance of glioblastoma cancer stem cells--much more complex than expected. Molecular cancer 10, 128.

Berse, B., Brown, L. F., Van de Water, L., Dvorak, H. F., and Senger, D. R. (1992). Vascular permeability factor (vascular endothelial growth factor) gene is expressed differentially in normal tissues, macrophages, and tumors. Molecular biology of the cell 3, 211-220.

Bhat, K. P., Balasubramaniyan, V., Vaillant, B., Ezhilarasan, R., Hummelink, K., Hollingsworth, F., Wani, K., Heathcock, L., James, J. D., Goodman, L. D., et al. (2013). Mesenchymal differentiation mediated by NF-kappaB promotes radiation resistance in glioblastoma. Cancer cell 24, 331-346.

Bidlingmaier, S., Zhu, X., and Liu, B. (2008). The utility and limitations of glycosylated human CD133 epitopes in defining cancer stem cells. J Mol Med (Berl) 86, 1025-1032.

Bloch, O., Safaee, M., Sun, M. Z., Butowski, N. A., McDermott, M. W., Berger, M. S., Aghi, M. K., and Parsa, A. T. (2013). Disseminated progression of glioblastoma after treatment with bevacizumab. Clinical neurology and neurosurgery 115, 1795-1801.

Broadley, K. W., Hunn, M. K., Farrand, K. J., Price, K. M., Grasso, C., Miller, R. J., Hermans, I. F., and McConnell, M. J. (2011). Side population is not necessary or sufficient for a cancer stem cell phenotype in glioblastoma multiforme. Stem Cells 29, 452-461.

Calabrese, C., Poppleton, H., Kocak, M., Hogg, T. L., Fuller, C., Hamner, B., Oh, E. Y., Gaber, M. W., Finklestein, D., Allen, M., et al. (2007). A perivascular niche for brain tumor stem cells. Cancer cell 11, 69-82.

Carbonell, W. S., DeLay, M., Jahangiri, A., Park, C. C., and Aghi, M. K. (2013). beta1 integrin targeting potentiates antiangiogenic therapy and inhibits the growth of bevacizumab-resistant glioblastoma. Cancer research 73, 3145-3154.

Carlsson, S. K., Brothers, S. P., and Wahlestedt, C. (2014). Emerging treatment strategies for glioblastoma multiforme. EMBO molecular medicine 6, 1359-1370.

Cheng, L., Huang, Z., Zhou, W., Wu, Q., Donnola, S., Liu, J. K., Fang, X., Sloan, A. E., Mao, Y., Lathia, J. D., et al. (2013). Glioblastoma stem cells generate vascular pericytes to support vessel function and tumor growth. Cell 153, 139-152.

Cheng, L., Wu, Q., Huang, Z., Guryanova, O. A., Huang, Q., Shou, W., Rich, J. N., and Bao, S. (2011). L1CAM regulates DNA damage checkpoint response of glioblastoma stem cells through NBS1. The EMBO journal 30, 800-813.

Chi, A. S., and Wen, P. Y. (2007). Inhibiting kinases in malignant gliomas. Expert opinion on therapeutic targets 11, 473-496.

Chinot, O. L., Wick, W., Mason, W., Henriksson, R., Saran, F., Nishikawa, R., Carpentier, A. F., Hoang-Xuan, K., Kavan, P., Cernea, D., et al. (2014). Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. The New England journal of medicine 370, 709-722.

Cohen, M. H., Shen, Y. L., Keegan, P., and Pazdur, R. (2009). FDA drug approval summary: bevacizumab (Avastin) as treatment of recurrent glioblastoma multiforme. The oncologist 14, 1131-1138.

Crocetti, E., Trama, A., Stiller, C., Caldarella, A., Soffietti, R., Jaal, J., Weber, D. C., Ricardi, U., Slowinski, J., and Brandes, A. (2012). Epidemiology of glial and non-glial brain tumours in Europe. Eur J Cancer 48, 1532-1542.

da Rocha, A. B., Mans, D. R., Regner, A., and Schwartsmann, G. (2002). Targeting protein kinase C: new therapeutic opportunities against high-grade malignant gliomas? The oncologist 7, 17-33.

DeLay, M., Jahangiri, A., Carbonell, W. S., Hu, Y. L., Tsao, S., Tom, M. W., Paquette, J., Tokuyasu, T. A., and Aghi, M. K. (2012). Microarray analysis verifies two distinct phenotypes of glioblastomas resistant to antiangiogenic therapy. Clinical cancer research : an official journal of the American Association for Cancer Research 18, 2930-2942.

Douville, J., Beaulieu, R., and Balicki, D. (2009). ALDH1 as a functional marker of cancer stem and progenitor cells. Stem cells and development 18, 17-25.

Facchino, S., Abdouh, M., Chatoo, W., and Bernier, G. (2010). BMI1 confers radioresistance to normal and cancerous neural stem cells through recruitment of the DNA damage response machinery. The Journal of neuroscience : the official journal of the Society for Neuroscience 30, 10096-10111.

Fargeas, C. A., Corbeil, D., and Huttner, W. B. (2003). AC133 antigen, CD133, prominin-1, prominin-2, etc.: prominin family gene products in need of a rational nomenclature. Stem Cells 21, 506-508.

Fischhaber, P. L., Gall, A. S., Duncan, J. A., and Hopkins, P. B. (1999). Direct demonstration in synthetic oligonucleotides that N,N'-bis(2-chloroethyl)-nitrosourea cross links N1 of deoxyguanosine to N3 of deoxycytidine on opposite strands of duplex DNA. Cancer research 59, 4363-4368.

Folkman, J. (1971). Tumor angiogenesis: therapeutic implications. The New England journal of medicine 285, 1182-1186.

Gilbert, M. R., Dignam, J. J., Armstrong, T. S., Wefel, J. S., Blumenthal, D. T., Vogelbaum, M. A., Colman, H., Chakravarti, A., Pugh, S., Won, M., et al. (2014). A randomized trial of bevacizumab for newly diagnosed glioblastoma. The New England journal of medicine 370, 699-708.

Hambardzumyan, D., Becher, O. J., and Holland, E. C. (2008). Cancer stem cells and survival pathways. Cell Cycle 7, 1371-1378.

Hamerlik, P., Lathia, J. D., Rasmussen, R., Wu, Q., Bartkova, J., Lee, M., Moudry, P., Bartek, J., Jr., Fischer, W., Lukas, J., et al. (2012). Autocrine VEGF-VEGFR2-Neuropilin-1 signaling promotes glioma stem-like cell viability and tumor growth. The Journal of experimental medicine 209, 507-520.

Hau, P., Koch, D., Hundsberger, T., Marg, E., Bauer, B., Rudolph, R., Rauch, M., Brenner, A., Rieckmann, P., Schuth, J., et al. (2007). Safety and feasibility of long-term temozolomide treatment in patients with high-grade glioma. Neurology 68, 688-690.

Hemmati, H. D., Nakano, I., Lazareff, J. A., Masterman-Smith, M., Geschwind, D. H., Bronner-Fraser, M., and Kornblum, H. I. (2003). Cancerous stem cells can arise from pediatric brain tumors. Proceedings of the National Academy of Sciences of the United States of America 100, 15178-15183.

Hirose, Y., Berger, M. S., and Pieper, R. O. (2001). p53 effects both the duration of G2/M arrest and the fate of temozolomide-treated human glioblastoma cells. Cancer research 61, 1957-1963.

Holmes, K., Roberts, O. L., Thomas, A. M., and Cross, M. J. (2007). Vascular endothelial growth factor receptor-2: structure, function, intracellular signalling and therapeutic inhibition. Cellular signalling 19, 2003-2012.

Hurwitz, H., Fehrenbacher, L., Novotny, W., Cartwright, T., Hainsworth, J., Heim, W., Berlin, J., Baron, A., Griffing, S., Holmgren, E., et al. (2004). Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. The New England journal of medicine 350, 2335-2342.

Huse, J. T., Holland, E., and DeAngelis, L. M. (2013). Glioblastoma: molecular analysis and clinical implications. Annual review of medicine 64, 59-70.

Jahangiri, A., De Lay, M., Miller, L. M., Carbonell, W. S., Hu, Y. L., Lu, K., Tom, M. W., Paquette, J., Tokuyasu, T. A., Tsao, S., et al. (2013). Gene expression profile identifies tyrosine kinase c-Met as a targetable mediator of antiangiogenic therapy resistance. Clinical cancer research : an official journal of the American Association for Cancer Research 19, 1773-1783.

Jijiwa, M., Demir, H., Gupta, S., Leung, C., Joshi, K., Orozco, N., Huang, T., Yildiz, V. O., Shibahara, I., de Jesus, J. A., et al. (2011). CD44v6 regulates growth of brain tumor stem cells partially through the AKT-mediated pathway. PloS one 6, e24217.

Juratli, T. A., Kirsch, M., Geiger, K., Klink, B., Leipnitz, E., Pinzer, T., Soucek, S., Schrock, E., Schackert, G., and Krex, D. (2012a). The prognostic value of IDH mutations and MGMT promoter status in secondary high-grade gliomas. Journal of neuro-oncology 110, 325-333.

Juratli, T. A., Kirsch, M., Robel, K., Soucek, S., Geiger, K., von Kummer, R., Schackert, G., and Krex, D. (2012b). IDH mutations as an early and consistent marker in low-grade astrocytomas WHO grade II and their consecutive secondary high-grade gliomas. Journal of neuro-oncology 108, 403-410.

Kaina, B., Ziouta, A., Ochs, K., and Coquerelle, T. (1997). Chromosomal instability, reproductive cell death and apoptosis induced by O6-methylguanine in Mex-, Mex+ and methylation-tolerant mismatch repair compromised cells: facts and models. Mutation research 381, 227-241.

Karran, P., and Bignami, M. (1994). DNA damage tolerance, mismatch repair and genome instability. BioEssays : news and reviews in molecular, cellular and developmental biology 16, 833-839.

Karran, P., Offman, J., and Bignami, M. (2003). Human mismatch repair, drug-induced DNA damage, and secondary cancer. Biochimie 85, 1149-1160.

Kilic, T., Alberta, J. A., Zdunek, P. R., Acar, M., Iannarelli, P., O'Reilly, T., Buchdunger, E., Black, P. M., and Stiles, C. D. (2000). Intracranial inhibition of platelet-derived growth factor-mediated glioblastoma cell growth by an orally active kinase inhibitor of the 2-phenylaminopyrimidine class. Cancer research 60, 5143-5150.

Kim, E., Kim, M., Woo, D. H., Shin, Y., Shin, J., Chang, N., Oh, Y. T., Kim, H., Rheey, J., Nakano, I., et al. (2013). Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells. Cancer cell 23, 839-852.

Kim, Y. H., Nobusawa, S., Mittelbronn, M., Paulus, W., Brokinkel, B., Keyvani, K., Sure, U., Wrede, K., Nakazato, Y., Tanaka, Y., et al. (2010). Molecular classification of low-grade diffuse gliomas. The American journal of pathology 177, 2708-2714.

Lai, A., Kharbanda, S., Pope, W. B., Tran, A., Solis, O. E., Peale, F., Forrest, W. F., Pujara, K., Carrillo, J. A., Pandita, A., et al. (2011). Evidence for sequenced molecular evolution of IDH1 mutant glioblastoma from a distinct cell of origin. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 29, 4482-4490.

Lehky, T. J., Iwamoto, F. M., Kreisl, T. N., Floeter, M. K., and Fine, H. A. (2011). Neuromuscular junction toxicity with tandutinib induces a myasthenic-like syndrome. Neurology 76, 236-241.
Lo, H. W. (2010a). EGFR-targeted therapy in malignant glioma: novel aspects and mechanisms of drug resistance. Current molecular pharmacology 3, 37-52.

Lo, H. W. (2010b). Nuclear mode of the EGFR signaling network: biology, prognostic value, and therapeutic implications. Discovery medicine 10, 44-51.

Louis, D. N., Ohgaki, H., Wiestler, O. D., Cavenee, W. K., Burger, P. C., Jouvet, A., Scheithauer, B. W., and Kleihues, P. (2007). The 2007 WHO classification of tumours of the central nervous system. Acta neuropathologica 114, 97-109.

Mao, P., Joshi, K., Li, J., Kim, S. H., Li, P., Santana-Santos, L., Luthra, S., Chandran, U. R., Benos, P. V., Smith, L., et al. (2013). Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3. Proceedings of the National Academy of Sciences of the United States of America 110, 8644-8649.

McCord, A. M., Jamal, M., Williams, E. S., Camphausen, K., and Tofilon, P. J. (2009). CD133+ glioblastoma stem-like cells are radiosensitive with a defective DNA damage response compared with established cell lines. Clinical cancer research : an official journal of the American Association for Cancer Research 15, 5145-5153.

McKinney, P. A. (2004). Brain tumours: incidence, survival, and aetiology. Journal of neurology, neurosurgery, and psychiatry 75 Suppl 2, ii12-17.

Miraglia, S., Godfrey, W., Yin, A. H., Atkins, K., Warnke, R., Holden, J. T., Bray, R. A., Waller, E. K., and Buck, D. W. (1997). A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood 90, 5013-5021.

Morrison, S. J., and Spradling, A. C. (2008). Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 132, 598-611.

Nakada, M., Kita, D., Watanabe, T., Hayashi, Y., Teng, L., Pyko, I. V., and Hamada, J. (2011). Aberrant signaling pathways in glioma. Cancers 3, 3242-3278.

Olar, A., and Aldape, K. D. (2014). Using the molecular classification of glioblastoma to inform personalized treatment. The Journal of pathology 232, 165-177.

Osuka, S., Sampetrean, O., Shimizu, T., Saga, I., Onishi, N., Sugihara, E., Okubo, J., Fujita, S., Takano, S., Matsumura, A., and Saya, H. (2013). IGF1 receptor signaling regulates adaptive radioprotection in glioma stem cells. Stem Cells 31, 627-640.

Parsons, D. W., Jones, S., Zhang, X., Lin, J. C., Leary, R. J., Angenendt, P., Mankoo, P., Carter, H., Siu, I. M., Gallia, G. L., et al. (2008). An integrated genomic analysis of human glioblastoma multiforme. Science 321, 1807-1812.

Patrawala, L., Calhoun, T., Schneider-Broussard, R., Zhou, J., Claypool, K., and Tang, D. G. (2005). Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic. Cancer research 65, 6207-6219.

Patrawala, L., Calhoun-Davis, T., Schneider-Broussard, R., and Tang, D. G. (2007). Hierarchical organization of prostate cancer cells in xenograft tumors: the CD44+alpha2beta1+ cell population is enriched in tumor-initiating cells. Cancer research 67, 6796-6805.

Phillips, H. S., Kharbanda, S., Chen, R., Forrest, W. F., Soriano, R. H., Wu, T. D., Misra, A., Nigro, J. M., Colman, H., Soroceanu, L., et al. (2006). Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer cell 9, 157-173.

Powell, C., Mikropoulos, C., Kaye, S. B., Nutting, C. M., Bhide, S. A., Newbold, K., and Harrington, K. J. (2010). Pre-clinical and clinical evaluation of PARP inhibitors as tumour-specific radiosensitisers. Cancer treatment reviews 36, 566-575.

Rahman, M., Deleyrolle, L., Vedam-Mai, V., Azari, H., Abd-El-Barr, M., and Reynolds, B. A. (2011). The cancer stem cell hypothesis: failures and pitfalls. Neurosurgery 68, 531-545; discussion 545.

Ricard, D., Idbaih, A., Ducray, F., Lahutte, M., Hoang-Xuan, K., and Delattre, J. Y. (2012). Primary brain tumours in adults. Lancet 379, 1984-1996.

Richardson, W. D., Pringle, N., Mosley, M. J., Westermark, B., and Dubois-Dalcq, M. (1988). A role for platelet-derived growth factor in normal gliogenesis in the central nervous system. Cell 53, 309-319.

Roos, W. P., and Kaina, B. (2006). DNA damage-induced cell death by apoptosis. Trends in molecular medicine 12, 440-450.

Sarkaria, J. N., Kitange, G. J., James, C. D., Plummer, R., Calvert, H., Weller, M., and Wick, W. (2008). Mechanisms of Chemoresistance in Malignant Glioma. Clinical cancer research : an official journal of the American Association for Cancer Research 14, 2900-2908.

Shackleton, M., Quintana, E., Fearon, E. R., and Morrison, S. J. (2009). Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 138, 822-829.

Silva, C. M. (2004). Role of STATs as downstream signal transducers in Src family kinase-mediated tumorigenesis. Oncogene 23, 8017-8023.

Singh, S. K., Clarke, I. D., Terasaki, M., Bonn, V. E., Hawkins, C., Squire, J., and Dirks, P. B. (2003). Identification of a cancer stem cell in human brain tumors. Cancer research 63, 5821-5828.

Singh, S. K., Hawkins, C., Clarke, I. D., Squire, J. A., Bayani, J., Hide, T., Henkelman, R. M., Cusimano, M. D., and Dirks, P. B. (2004). Identification of human brain tumour initiating cells. Nature 432, 396-401.

Son, M. J., Woolard, K., Nam, D. H., Lee, J., and Fine, H. A. (2009). SSEA-1 is an enrichment marker for tumor-initiating cells in human glioblastoma. Cell stem cell 4, 440-452.

Sottoriva, A., Spiteri, I., Piccirillo, S. G., Touloumis, A., Collins, V. P., Marioni, J. C., Curtis, C., Watts, C., and Tavare, S. (2013). Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proceedings of the National Academy of Sciences of the United States of America 110, 4009-4014.

Squatrito, M., Brennan, C. W., Helmy, K., Huse, J. T., Petrini, J. H., and Holland, E. C. (2010). Loss of ATM/Chk2/p53 pathway components accelerates tumor development and contributes to radiation resistance in gliomas. Cancer cell 18, 619-629.

Stupp, R., Mason, W. P., van den Bent, M. J., Weller, M., Fisher, B., Taphoorn, M. J., Belanger, K., Brandes, A. A., Marosi, C., Bogdahn, U., et al. (2005a). Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. The New England journal of medicine 352, 987-996.

Stupp, R., Pavlidis, N., and Jelic, S. (2005b). ESMO Minimum Clinical Recommendations for diagnosis, treatment and follow-up of malignant glioma. Annals of oncology : official journal of the European Society for Medical Oncology / ESMO 16 Suppl 1, i64-65.

Stupp, R., and Roila, F. (2009). Malignant glioma: ESMO clinical recommendations for diagnosis, treatment and follow-up. Annals of oncology : official journal of the European Society for Medical Oncology / ESMO 20 Suppl 4, 126-128.

Sussman, R. T., Ricci, M. S., Hart, L. S., Sun, S. Y., and El-Deiry, W. S. (2007). Chemotherapy-resistant side-population of colon cancer cells has a higher sensitivity to TRAIL than the non-SP, a higher expression of c-Myc and TRAIL-receptor DR4. Cancer biology & therapy 6, 1490-1495.

Talasila, K. M., Soentgerath, A., Euskirchen, P., Rosland, G. V., Wang, J., Huszthy, P. C., Prestegarden, L., Skaftnesmo, K. O., Sakariassen, P. O., Eskilsson, E., et al. (2013). EGFR wild-type amplification and activation promote invasion and development of glioblastoma independent of angiogenesis. Acta neuropathologica 125, 683-698.

Tanaka, S., Louis, D. N., Curry, W. T., Batchelor, T. T., and Dietrich, J. (2013). Diagnostic and therapeutic avenues for glioblastoma: no longer a dead end? Nature reviews Clinical oncology 10, 14-26.

Uchida, N., Buck, D. W., He, D., Reitsma, M. J., Masek, M., Phan, T. V., Tsukamoto, A. S., Gage, F. H., and Weissman, I. L. (2000). Direct isolation of human central nervous system stem cells. Proceedings of the National Academy of Sciences of the United States of America 97, 14720-14725.

Uhrbom, L., Hesselager, G., Nister, M., and Westermark, B. (1998). Induction of brain tumors in mice using a recombinant platelet-derived growth factor B-chain retrovirus. Cancer research 58, 5275-5279.

Venere, M., Hamerlik, P., Wu, Q., Rasmussen, R. D., Song, L. A., Vasanji, A., Tenley, N., Flavahan, W. A., Hjelmeland, A. B., Bartek, J., and Rich, J. N. (2013a). Therapeutic targeting of constitutive PARP activation compromises stem cell phenotype and survival of glioblastoma-initiating cells. Cell death and differentiation.

Venere, M., Miller, T. E., and Rich, J. N. (2013b). Mitotic control of cancer stem cells. Cancer discovery 3, 141-144.

Verhaak, R. G., Hoadley, K. A., Purdom, E., Wang, V., Qi, Y., Wilkerson, M. D., Miller, C. R., Ding, L., Golub, T., Mesirov, J. P., et al. (2010). Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer cell 17, 98-110.

Vitucci, M., Hayes, D. N., and Miller, C. R. (2011). Gene expression profiling of gliomas: merging genomic and histopathological classification for personalised therapy. British journal of cancer 104, 545-553.

Walker, M. D., Alexander, E., Jr., Hunt, W. E., MacCarty, C. S., Mahaley, M. S., Jr., Mealey, J., Jr., Norrell, H. A., Owens, G., Ransohoff, J., Wilson, C. B., et al. (1978). Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas. A cooperative clinical trial. Journal of neurosurgery 49, 333-343.

Wang, H., Xu, T., Jiang, Y., Xu, H., Yan, Y., Fu, D., and Chen, J. (2015). The challenges and the promise of molecular targeted therapy in malignant gliomas. Neoplasia 17, 239-255.

Wang, J., Sakariassen, P. O., Tsinkalovsky, O., Immervoll, H., Boe, S. O., Svendsen, A., Prestegarden, L., Rosland, G., Thorsen, F., Stuhr, L., et al. (2008a). CD133 negative glioma cells form tumors in nude rats and give rise to CD133 positive cells. International journal of cancer Journal international du cancer 122, 761-768.

Wang, J., Wakeman, T. P., Lathia, J. D., Hjelmeland, A. B., Wang, X. F., White, R. R., Rich, J. N., and Sullenger, B. A. (2010). Notch promotes radioresistance of glioma stem cells. Stem Cells 28, 17-28.

Wang, J., Wang, H., Li, Z., Wu, Q., Lathia, J. D., McLendon, R. E., Hjelmeland, A. B., and Rich, J. N. (2008b). c-Myc is required for maintenance of glioma cancer stem cells. PloS one 3, e3769.

Wei, Y., Jiang, Y., Zou, F., Liu, Y., Wang, S., Xu, N., Xu, W., Cui, C., Xing, Y., Liu, Y., et al. (2013). Activation of PI3K/Akt pathway by CD133-p85 interaction promotes tumorigenic capacity of glioma stem cells. Proceedings of the National Academy of Sciences of the United States of America 110, 6829-6834.

Weller, M., Muller, B., Koch, R., Bamberg, M., and Krauseneck, P. (2003). Neuro-Oncology Working Group 01 trial of nimustine plus teniposide versus nimustine plus cytarabine chemotherapy in addition to involved-field radiotherapy in the first-line treatment of malignant glioma. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 21, 3276-3284.

Wen, P. Y., Yung, W. K., Lamborn, K. R., Dahia, P. L., Wang, Y., Peng, B., Abrey, L. E., Raizer, J., Cloughesy, T. F., Fink, K., et al. (2006). Phase I/II study of imatinib mesylate for recurrent malignant gliomas: North American Brain Tumor Consortium Study 99-08. Clinical cancer research : an official journal of the American Association for Cancer Research 12, 4899-4907.

Westphal, M., and Lamszus, K. (2011). The neurobiology of gliomas: from cell biology to the development of therapeutic approaches. Nature reviews Neuroscience 12, 495-508.

Yan, K., Yang, K., and Rich, J. N. (2013). The evolving landscape of glioblastoma stem cells. Current opinion in neurology.

Yung, W. K. (2000). Temozolomide in malignant gliomas. Seminars in oncology 27, 27-34.

Yung, W. K., Albright, R. E., Olson, J., Fredericks, R., Fink, K., Prados, M. D., Brada, M., Spence, A., Hohl, R. J., Shapiro, W., et al. (2000). A phase II study of temozolomide vs. procarbazine in patients with glioblastoma multiforme at first relapse. British journal of cancer 83, 588-593.

Zhu, X., Zuo, H., Maher, B. J., Serwanski, D. R., LoTurco, J. J., Lu, Q. R., and Nishiyama, A. (2012). Olig2-dependent developmental fate switch of NG2 cells. Development 139, 2299-2307.