Mitochondrial Capacity and Muscle Endurance in Individuals with Parkinson’s Disease
Main Article Content
Abstract
Introduction: Parkinson's disease (PD) is associated with loss of motor control and difficulty exercising. This study measured skeletal muscle mitochondrial capacity and endurance in individuals with and without PD using novel non-invasive methods. We hypothesized that individuals with PD will have decreased mitochondrial capacity, reduced oxygen recovery, and decreased endurance compared to controls. Methods: Eight participants with PD and nine healthy controls were tested. Mitochondrial capacity was measured as the rate of recovery of muscle metabolism after electrical stimulation using near-infrared spectroscopy (NIRS) and repeated short arterial occlusions. Oxygen recovery was measured as the half time of recovery of oxygen levels after 5 minutes of ischemia. Muscle endurance was determined from changes in twitch contraction acceleration during electrical stimulation at 2, 4, and 6 Hz. Results: Mitochondrial capacity was lower in individuals with PD compared to controls (1.5±0.1min-1 vs. 1.7±0.1min-1, p=0.02). Individuals with PD had slower oxygen recovery after ischemia compared to controls (8.9±2.3s vs. 5.4±0.8s, p=0.01). Endurance was not different between groups at 6 Hz (PD vs controls: 58±23% vs. 69±16%, p=0.34). The effect sizes for mitochondrial capacity and oxygen recovery were large (Cohen's d >0.8). The Cohen's d for endurance was 1.11. Conclusion: Individuals with PD had slight impairments in mitochondrial capacity and blood flow but did not have reduced muscle endurance. While our study suggests that muscle metabolic dysfunction may play a minor role in exercise intolerance in people with PD, it demonstrates the use of noninvasive technologies to evaluate muscle function in people with neurological disorders.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Ziv I, Avraham M, Michaelov Y, et al. Enhanced fatigue during motor performance in patients with Parkinson's disease. Neurology. Dec 1998;51(6):1583-6. doi:10.1212/wnl.51.6.1583
3. Bouca-Machado R, Rosario A, Caldeira D, et al. Physical Activity, Exercise, and Physiotherapy in Parkinson's Disease: Defining the Concepts. Mov Disord Clin Pract. Jan 2020;7(1):7-15. doi:10.1002/mdc3.12849
4. Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. Oct 19 2006;443(7113):787-95. doi:10.1038/nature05292
5. Willingham TB, McCully KK. In Vivo Assessment of Mitochondrial Dysfunction in Clinical Populations using Near-Infrared Spectroscopy. Review. Frontiers in Physiology. 2017;8(689):1-11. doi:10.3389/fphys.2017.00689
6. Willingham TB, Southern WM, McCully KK. Measuring reactive hyperemia in the lower limb using near-infrared spectroscopy. J Biomed Opt. Sep 2016;21(9):091302. doi:10.1117/1.JBO.21.9.091302
7. Willingham TB, McCully KK. Assessment of Muscle Fatigue during Twitch Electrical Stimulation using Accelerometer-based Mechanomyography. Advances in Skeletal Muscle Function Assessment. August, 2017 2017;1(2):14-20.
8. Mahoney FI, Barthel DW. Functional Evaluation: The Barthel Index. Md State Med J. Feb 1965;14:61-5.
9. Anderson JJ, Bravi D, Ferrari R, et al. No evidence for altered muscle mitochondrial function in Parkinson's disease. J Neurol Neurosurg Psychiatry. May 1993;56(5):477-80. doi:10.1136/jnnp.56.5.477
10. Crowley EK, Nolan YM, Sullivan AM. Exercise as a therapeutic intervention for motor and non-motor symptoms in Parkinson's disease: Evidence from rodent models. Prog Neurobiol. Jan 2019;172:2-22. doi:10.1016/j.pneurobio.2018.11.003
11. Tang L, Fang Y, Yin J. The effects of exercise interventions on Parkinson's disease: A Bayesian network meta-analysis. J Clin Neurosci. Dec 2019;70:47-54. doi:10.1016/j.jocn.2019.08.092
12. Willingham TB, Backus D, McCully KK. Muscle Dysfunction and Walking Impairment in Women with Multiple Sclerosis. International Journal of MS Care. 2019/11/01 2019;21(6):249-256. doi:10.7224/1537-2073.2018-020
13. McCully K, Halber C, Posner J. Exercise-induced changes in oxygen saturation in the calf muscles of elderly subjects with peripheral vascular disease. Journal of Gerontology. 1994;49(3):B128-B134.