Cancer Stem Cells: Innovative Approach for Testable Alternatives against Therapy Resistant Cancer
Main Article Content
Abstract
Chemo-resistant cancer stem cells represent a sub-population of cancer initiating phenotype in primary cancer. These cells evolve in to a metastatic phenotype via activation of multiple cell signaling pathways for cancer cell survival and epithelial-mesenchymal transition. Reliable cancer stem cell models represent a valuable experimental approach for drug discovery platform to identify efficacious testable alternatives against therapy-resistant cancer. Present commentary provides a systematic discussion of relevant conceptual and technical aspects of cancer stem cell biology and its significance for therapeutic alternatives.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. National Comprehensive Cancer Network. 2022. www.nccn.org.
3. Drost J, Van Jaarsveld RH, Ponsioen B, et al: Sequential cancer mutations in cultured human intestinal cells. Nature 2015, 521: 43-47.
4. Levine AJ, Jenkins NA, Copeland NG: The roles of initiating truncal mutations in human cancers: The order of mutations and tumor cell type matters. Cancer Cell 2019, 35: 10-15.
5. Ye L, Jia Y, Ji KE, et al: Traditional Chinese medicine in the prevention and treatment of cancer and cancer metastasis. Oncol. Lett. 2015, 10: 1240-1250.
6. Yang Z, Zhang Q, Yu L, et al: The signaling pathways and targets of traditional Chinese medicine and natural medicine in triple-negative breast cancer. J. Ethnopharmacol. 2021, 264:113249.
7. Telang N: Natural phytochemicals as testable therapeutic alternatives for HER-2-enriched breast cancer (Review).World Acad. Sci. J. 2020 2:19.
8. Telang NT: The divergent effects of ovarian steroid hormones in the MCF-7 model for Luminal A breast cancer: Mechanistic leads for therapy. Int. J. Mol. Sci. 2022, 23, 4800.
9. Telang N: Stem cell models for genetically predisposed colon cancer (Review). Oncol. Lett. 2020, 20: 138.
10. Telang N: Drug-resistant stem cells: Novel approach for colon cancer therapy. Int. J. Mol. Sci. 2022, 23, 2519.
11. Barker N: Adult intestinal stem cells: Critical drivers of epithelial homeostasis and regeneration. Nat. Rev. Mol. Cell. Biol. 2014, 15:19-33.
12. Soteriou D, Fuchs Y: A matter of life and death: Stem cell survival in tissue regeneration and tumor formation. Nat. Rev. Cancer 2018, 18: 187-201.
13. Lytle NK, Barber AG, Reya T: Stem cell fate in cancer growth, progression and therapy resistance. Nat. Rev. Cancer 2018, 18: 669-680.
14. Yaeger R, Solit DB: Overcoming adaptive resistance to KRAS inhibitors through vertical pathway targeting. Clin. Cancer Res. 2020, 26:1538-1540.
15. Shibue T, Weinberg RA: EMT, CSCs, and drug resistance: The mechanistic link and clinical implications. Nat. Rev. Clin. Oncol. 2017, 14: 611-629.
16. Yang F, Zhang J, Yang H: OCT-2, SOX-2 and NANOG positive expression correlates with poor differentiation, advanced disease stages and worse overall survival in HER-2+ breast cancer patients. Onco Targets Ther. 2018, 11: 7873-7881.
17. Manogaran P, Umapathy D, Karthikeyan M, et al: Dietary phytochemicals as a potential source for targeting cancer stem cells. Cancer Investig. 2021, 39: 349-368.
18. Naujokat C, Mc Kee DI: The “Big Five” phytochemicals targeting cancer stem cells: Curcumin, EGCG, sulforaphane, resveratrol and genistein. Curr. Med. Chem. 2021, 28: 4321-4342.
19. Meerson A, Khatib S, Mahajna J: Natural products targeting cancer stem cells for augmenting cancer therapeutics. Int. J. Mol. Sci. 2021, 22: 13044.
20. Hong M, Tan H-Y, Li S, et al: Cancer stem cells: The potential targets of Chinese medicines and their active compounds. Int. J. Mol. Sci. 2016, 17, 893.
21. Bruna A, Rueda OM, Greenwood W, et al: A biobank of breast cancer explants with preserved intra-tumor heterogeneity to screen anticancer compounds. Cell 2016, 167: 260-274. e22.
22. Sachs N, de Ligt J, Kopper O, et al: A living biobank of breast cancer organoids captures disease heterogeneity. Cell 2018, 172: 373-386, e10.
23. Drost J, Clevers H: Organoids in cancer research. Nat. Rev. Cancer 2018, 18: 407-418.
24. Pan B, Zhao D, Liu Y, et al: Breast cancer organoids from malignant pleural effusion-derived tumor cells as an individualized medicine platform. In Vitro Dev. Biol. Anim. 2021, 57: 510-518.