Small Vessel Cerebrovascular Pathology is a Major Feature in the Pathogenesis of Alzheimer’s Disease or Age-Related Dementia

Main Article Content

Tammy M Scott, Ph.D. Irwin H. Rosenberg, M.D.

Abstract

Historically, cerebrovascular abnormalities were recognized as prominent in the pathology of age-related dementia. In more recent decades, however, research and funding for development of therapeutics has almost entirely been focused on β-amyloid and tau deposits (as described by Alzheimer in pre-senile dementia), despite a lack of conclusive evidence of a causal relationship or efficacy of targeted treatment on cognitive decline or dementia. Here we present a brief history of the evidence for a dominant vascular component of Alzheimer’s Disease and highlight a potential target for slowing the functional progression of the disease.

Article Details

How to Cite
SCOTT, Tammy M; ROSENBERG, Irwin H.. Small Vessel Cerebrovascular Pathology is a Major Feature in the Pathogenesis of Alzheimer’s Disease or Age-Related Dementia. Medical Research Archives, [S.l.], v. 10, n. 9, sep. 2022. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/3139>. Date accessed: 03 jan. 2025. doi: https://doi.org/10.18103/mra.v10i9.3139.
Section
Research Articles

References

1. Jack Jr CR, Bennett DA, Blennow K, et al. NIA-AA research framework: toward a biological definition of Alzheimer's disease. Alzheimer's & Dementia. 2018;14(4):535-562.
2. Snowdon DA, Greiner LH, Mortimer JA, Riley KP, Greiner PA, Markesbery WR. Brain infarction and the clinical expression of Alzheimer disease. The Nun Study. JAMA. Mar 12 1997;277(10):813-7.
3. Toledo JB, Arnold SE, Raible K, et al. Contribution of cerebrovascular disease in autopsy confirmed neurodegenerative disease cases in the National Alzheimer’s Coordinating Centre. Brain. 2013;136(9):2697-2706.
4. Sweeney MD, Montagne A, Sagare AP, et al. Vascular dysfunction—the disregarded partner of Alzheimer's disease. Alzheimer's & Dementia. 2019;15(1):158-167.
5. Klohs J. An integrated view on vascular dysfunction in Alzheimer’s disease. Neurodegenerative Diseases. 2019;19(3-4):109-127.
6. Govindpani K, McNamara LG, Smith NR, et al. Vascular dysfunction in Alzheimer’s disease: a prelude to the pathological process or a consequence of it? Journal of clinical medicine. 2019;8(5):651.
7. De la Torre J. Alzheimer disease as a vascular disorder: nosological evidence. Stroke. 2002;33(4):1152-1162.
8. Pasquier F, Leys D, Scheltens P. The influence of coincidental vascular pathology on symptomatology and course of Alzheimer’s disease. Alzheimer’s disease—From basic research to clinical applications. 1998:117-127.
9. Breteler MM. Vascular risk factors for Alzheimer’s disease:: An epidemiologic perspective. Neurobiology of aging. 2000;21(2):153-160.
10. Breteler MM. Vascular involvement in cognitive decline and dementia: epidemiologic evidence from the Rotterdam Study and the Rotterdam Scan Study. Annals of the New York Academy of Sciences. 2000;903(1):457-465.
11. Ott A, Breteler MM, De Bruyne MC, Van Harskamp F, Grobbee DE, Hofman A. Atrial fibrillation and dementia in a population-based study: the Rotterdam Study. Stroke. 1997;28(2):316-321.
12. Ott A, Stolk R, Hofman A, van Harskamp F, Grobbee D, Breteler M. Association of diabetes mellitus and dementia: the Rotterdam Study. Diabetologia. 1996;39(11):1392-1397.
13. Scott TM, Bhadelia RA, Qiu WQ, Folstein MF, Rosenberg IH. Small Vessel Cerebrovascular Pathology Identified by Magnetic Resonance Imaging Is Prevalent in Alzheimer's Disease and Mild Cognitive Impairment: A Potential Target for Intervention. J Alzheimers Dis. 2018;65(1):293-302. doi:10.3233/JAD-180366
14. Kraepelin E. Das arteriosklerotische Irresein. Psychiatrie Ein Lehrbuch für Studierende und Ärzte. 1910;2:554-593.
15. Alzheimer A. Neuere Arbeiten über die Dementia senilis und die auf atheromatöser Gefässerkrankung basierenden Gehirnkrankheiten. European Neurology. 1898;3(1):101-115.
16. Alzheimer A. Uber eine eigenartige Erkrankung der Hirnrinde. Zentralbl Nervenh Psych. 1907 1907;18:177-179.
17. Knopman DS, Petersen RC, Jack CR. A brief history of “Alzheimer disease”: Multiple meanings separated by a common name. Neurology. 2019;92(22):1053-1059.
18. Esiri MM, Joachim C, Sloan C, et al. Cerebral subcortical small vessel disease in subjects with pathologically confirmed Alzheimer disease: a clinicopathologic study in the Oxford Project to Investigate Memory and Ageing (OPTIMA). Alzheimer Dis Assoc Disord. Jan-Mar 2014;28(1):30-5. doi:10.1097/WAD.0b013e31829b72f1
19. Vermeer SE, Van Dijk EJ, Koudstaal PJ, et al. Homocysteine, silent brain infarcts, and white matter lesions: The Rotterdam Scan Study. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society. 2002;51(3):285-289.
20. van Dijk EJ, Prins ND, Vrooman HA, Hofman A, Koudstaal PJ, Breteler MM. Progression of cerebral small vessel disease in relation to risk factors and cognitive consequences: Rotterdam Scan study. Stroke. 2008;39(10):2712-2719.
21. Vermeer SE, Prins ND, den Heijer T, Hofman A, Koudstaal PJ, Breteler MM. Silent brain infarcts and the risk of dementia and cognitive decline. New England Journal of Medicine. 2003;348(13):1215-1222.
22. Gorelick PB, Scuteri A, Black SE, et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the american heart association/american stroke association. Stroke. Sep 2011;42(9):2672-713. doi:10.1161/STR.0b013e3182299496
23. de Leeuw F-E, Kalaria R, Scheltens P. Treatment of vascular risk factors to delay Alzheimer’s disease? In: Gauthier S, Scheltens P, Cummings J, eds. Alzheimer's Disease and Related Disorders. Informa Healthcare; 2005:153.
24. Yu JT, Xu W, Tan CC, et al. Evidence-based prevention of Alzheimer's disease: systematic review and meta-analysis of 243 observational prospective studies and 153 randomised controlled trials. J Neurol Neurosurg Psychiatry. Nov 2020;91(11):1201-1209. doi:10.1136/jnnp-2019-321913
25. Wang Z, Zhu W, Xing Y, Jia J, Tang Y. B vitamins and prevention of cognitive decline and incident dementia: a systematic review and meta-analysis. Nutr Rev. Aug 25 2021;doi:10.1093/nutrit/nuab057
26. Beydoun MA, Beydoun HA, Gamaldo AA, Teel A, Zonderman AB, Wang Y. Epidemiologic studies of modifiable factors associated with cognition and dementia: systematic review and meta-analysis. BMC public health. 2014;14(1):1-33.
27. Smith A, Refsum H. Homocysteine–from disease biomarker to disease prevention. Journal of Internal Medicine. 2021;290(4):826-854.
28. Carson NA, Neill D. Metabolic abnormalities detected in a survey of mentally backward individuals in Northern Ireland. Archives of disease in childhood. 1962;37(195):505.
29. McCully K. Vascular pathology of homocysteinemia: implications for the pathogenesis of arteriosclerosis. The American journal of pathology. 1969;56(1):111.
30. Selhub J, Jacques PF, Bostom AG, et al. Relationship between plasma homocysteine, vitamin status and extracranial carotid-artery stenosis in the Framingham Study population. The Journal of nutrition. 1996;126(suppl_4):1258S-1265S.
31. Bostom AG, Rosenberg IH, Silbershatz H, et al. Nonfasting plasma total homocysteine levels and stroke incidence in elderly persons: the Framingham Study. Annals of internal medicine. 1999;131(5):352-355.
32. Seshadri S, Beiser A, Selhub J, et al. Plasma homocysteine as a risk factor for dementia and Alzheimer's disease. New England journal of medicine. 2002;346(7):476-483.
33. Teng Z, Feng J, Liu R, et al. Cerebral small vessel disease mediates the association between homocysteine and cognitive function. Frontiers in Aging Neuroscience. 2022;14
34. Riggs KM, Spiro A, 3rd, Tucker K, Rush D. Relations of vitamin B-12, vitamin B-6, folate, and homocysteine to cognitive performance in the Normative Aging Study. Am J Clin Nutr. Mar 1996;63(3):306-14. doi:10.1093/ajcn/63.3.306
35. Tucker KL, Qiao N, Scott T, Rosenberg I, Spiro A, 3rd. High homocysteine and low B vitamins predict cognitive decline in aging men: the Veterans Affairs Normative Aging Study. Am J Clin Nutr. Sep 2005;82(3):627-35. doi:10.1093/ajcn.82.3.627
36. Kado DM, Karlamangla AS, Huang M-H, et al. Homocysteine versus the vitamins folate, B6, and B12 as predictors of cognitive function and decline in older high-functioning adults: MacArthur Studies of Successful Aging. The American journal of medicine. 2005;118(2):161-167.
37. de Jager CA, Oulhaj A, Jacoby R, Refsum H, Smith AD. Cognitive and clinical outcomes of homocysteine‐lowering B‐vitamin treatment in mild cognitive impairment: a randomized controlled trial. International journal of geriatric psychiatry. 2012;27(6):592-600.
38. Durga J, van Boxtel MP, Schouten EG, et al. Effect of 3-year folic acid supplementation on cognitive function in older adults in the FACIT trial: a randomised, double blind, controlled trial. Lancet. Jan 20 2007;369(9557):208-16. doi:10.1016/S0140-6736(07)60109-3
39. Scott TM, Rogers G, Weiner DE, et al. B-Vitamin Therapy for Kidney Transplant Recipients Lowers Homocysteine and Improves Selective Cognitive Outcomes in the Randomized FAVORIT Ancillary Cognitive Trial. J Prev Alzheimers Dis. 2017;4(3):174-182. doi:10.14283/jpad.2017.15
40. Kalaria RN, Ballard C. Overlap between pathology of Alzheimer disease and vascular dementia. Alzheimer disease and associated disorders. 1999;