Physical Factors of Food Influencing the Postprandial Blood or Plasma Glucose Level: A Narrative Review

Main Article Content

Robbert Bipat Indira Magali Rubaina Soekhoe Jerry Toelsie


Emerging evidence suggests that a high postprandial glucose level in plasma or blood is an important factor for the etiology of non-communicable disorders like the metabolic syndrome, diabetes, obesity and cardiovascular disease. A high sugar content of the food naturally increases the postprandial glucose level. However, quite a few studies provided proof in the past that the physical properties like viscosity, temperature, and water content of the food we consume also may influence the level of this parameter. The aim of this study is to give a narrative review of present findings that showed the physical properties of consumed food influenced the postprandial glucose level.

The online databases Medline, Pubmed, Google Scholar and Hinari have been searched for publications on “plasma glucose” and “temperature” or “viscosity” or “solubility” or “water content”. All articles dealing with the influence on the postprandial glucose level in the blood have been included. Articles written in a language we could not understand or without a proper translation into English have been excluded.

In general, most available studies showed that the physical properties temperature, viscosity, and water content of consumed food influenced the postprandial glucose. An increased temperature, increased viscosity and decreased water content of the food is generally associated with a higher postprandial glucose level in blood or plasma after consumption. Further detailed studies in both preclinical as well as clinical trials should be considered to obtain more detailed results regarding this.

Keywords: Postprandial glucose, temperature, viscosity, water, Food

Article Details

How to Cite
BIPAT, Robbert et al. Physical Factors of Food Influencing the Postprandial Blood or Plasma Glucose Level: A Narrative Review. Medical Research Archives, [S.l.], v. 11, n. 4, apr. 2023. ISSN 2375-1924. Available at: <>. Date accessed: 29 may 2023. doi:
Review Articles


1. Monnier L, Colette C. Postprandial and basal hyperglycaemia in type 2 diabetes: Contributions to overall glucose exposure and diabetic complications. Diabetes Metab. 2015;41(6):6S9-6S15. doi:10.1016/S1262-3636(16)30003-9
2. Bastyr EJ, Stuart CA, Brodows RG, et al. Therapy focused on lowering postprandial glucose, not fasting glucose, may be superior for lowering HbA1c. IOEZ Study Group. Diabetes Care. 2000;23(9):1236-1241. doi:10.2337/DIACARE.23.9.1236
3. Blaak EE, Antoine JM, Benton D, et al. Impact of postprandial glycaemia on health and prevention of disease. Obesity Reviews. 2012;13(10):923-984. doi:10.1111/J.1467-789X.2012.01011.X
4. Gerich JE. Postprandial Hyperglycemia and Cardiovascular Disease. Endocrine Practice. 2006;12(SUPPL. 1):47-51. doi:10.4158/EP.12.S1.47
5. Temelkova-Kurktschiev TS, Koehler C, Henkel E, Leonhardt W, Fuecker K, Hanefeld M. Postchallenge plasma glucose and glycemic spikes are more strongly associated with atherosclerosis than fasting glucose or HbA1c level. Diabetes Care. 2000;23(12):1830-1834. doi:10.2337/DIACARE.23.12.1830
6. Yu PC, Bosnyak Z, Ceriello A. The importance of glycated haemoglobin (HbA1c) and postprandial glucose (PPG) control on cardiovascular outcomes in patients with type 2 diabetes. Diabetes Res Clin Pract. 2010;89(1):1-9. doi:10.1016/J.DIABRES.2009.12.009
7. Madsbad S. Impact of postprandial glucose control on diabetes-related complications: How is the evidence evolving? J Diabetes Complications. 2016;30(2):374-385. doi:10.1016/J.JDIACOMP.2015.09.019
8. Ceriello A, Hanefeld M, Leiter L, et al. Postprandial Glucose Regulation and Diabetic Complications. Arch Intern Med. 2004;164(19):2090-2095. doi:10.1001/ARCHINTE.164.19.2090
9. Lozano R, Naghavi M, Foreman K, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. The Lancet. 2012;380(9859):2095-2128. doi:10.1016/S0140-6736(12)61728-0
10. Lin X, Xu Y, Pan X, et al. Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Sci Rep. 2020;10(1):1-11.
11. Peter R, Okoseime OE, Rees A, Owens DR. Postprandial Glucose - A Potential Therapeutic Target to Reduce Cardiovascular Mortality. Curr Vasc Pharmacol. 2009;7(1):68-74. doi:10.2174/157016109787354169
12. Lin HJ, Lee BC, Ho YL, et al. Postprandial Glucose Improves the Risk Prediction of Cardiovascular Death Beyond the Metabolic Syndrome in the Nondiabetic Population. Diabetes Care. 2009;32(9):1721-1726. doi:10.2337/DC08-2337
13. Landgraf R. The relationship of postprandial glucose to HbA1c. Diabetes Metab Res Rev. 2004;20(S2):S9-S12. doi:10.1002/DMRR.517
14. Daly M. Sugars, insulin sensitivity, and the postprandial state. Am J Clin Nutr. 2003;78(4):865S-872S. doi:10.1093/AJCN/78.4.865S
15. Kröger J, Siegmund T, Schubert-Olesen O, et al. AGP and Nutrition – Analysing postprandial glucose courses with CGM. Diabetes Res Clin Pract. 2021;174:108738. doi:10.1016/J.DIABRES.2021.108738
16. Meyer C, Dostou JM, Welle SL, Gerich JE. Role of human liver, kidney, and skeletal muscle in postprandial glucose homeostasis. Am J Physiol Endocrinol Metab. 2002;282(2 45-2). doi:10.1152/AJPENDO.00032.2001/ASSET/IMAGES/LARGE/H10220688007.JPEG
17. le Chevalier P, van Wormhoudt A. Alpha-glucosidase from the hepatopancreas of the shrimp, Penaus vannamei (Crustacea-Decapoda). Journal of Experimental Zoology. 1998;280(6):384-394. doi:<384::AID-JEZ2>3.0.CO;2-J
18. Koster JF, Slee RG. Some properties of human liver acid α-glucosidase. Biochimica et Biophysica Acta (BBA) - Enzymology. 1977;482(1):89-97. doi:10.1016/0005-2744(77)90357-6
19. Roig-Zamboni V, Cobucci-Ponzano B, Iacono R, et al. Structure of human lysosomal acid α-glucosidase–a guide for the treatment of Pompe disease. Nature Communications 2017 8:1. 2017;8(1):1-10. doi:10.1038/s41467-017-01263-3
20. O’Dea K, Nestel PJ, Antonoff L. Physical factors influencing postprandial glucose and insulin responses to starch. Am J Clin Nutr. 1980;33(4):760-765. doi:10.1093/AJCN/33.4.760
21. Kuipers HMM, Jansen RWMM, Peeters TL. The Influence of Food Temperature on Postprandial Blood Pressure Reduction and Its Relation to Substance-P in Healthy Elderly Subjects. J Am Geriatr Soc. 1991;39(2):181-184. doi:10.1111/J.1532-5415.1991.TB01623.X
22. Najjar N, Adra N, Hwalla N. Glycemic and insulinemic responses to hot vs cooled potato in males with varied insulin sensitivity. Nutrition Research. 2004;24(12):993-1004. doi:10.1016/J.NUTRES.2004.09.002
23. Patterson MA, Fong JN, Maiya M, et al. Chilled Potatoes Decrease Postprandial Glucose, Insulin, and Glucose-dependent Insulinotropic Peptide Compared to Boiled Potatoes in Females with Elevated Fasting Glucose and Insulin. Nutrients 2019, Vol 11, Page 2066. 2019;11(9):2066. doi:10.3390/NU11092066
24. Fong JVN, Miketinas D, Moore LW, et al. Precision Nutrition Model Predicts Glucose Control of Overweight Females Following the Consumption of Potatoes High in Resistant Starch. Nutrients 2022, Vol 14, Page 268. 2022;14(2):268. doi:10.3390/NU14020268
25. Leicht CA, James LJ, Briscoe JHB, Hoekstra SP. Hot water immersion acutely increases postprandial glucose concentrations. Physiol Rep. 2019;7(20):e14223. doi:10.14814/PHY2.14223
26. Shen EX, Moses RG, Oats JJN, Lowe J, McIntyre HD. Seasonality, temperature and pregnancy oral glucose tolerance test results in Australia. BMC Pregnancy Childbirth. 2019;19(1):263. doi:10.1186/S12884-019-2413-5/TABLES/7
27. Dumke CL, Slivka DR, Cuddy JS, Hailes WS, Rose SM, Ruby BC. The Effect of Environmental Temperature on Glucose and Insulin After an Oral Glucose Tolerance Test in Healthy Young Men. Wilderness Environ Med. 2015;26(3):335-342. doi:10.1016/J.WEM.2015.03.002
28. Frayn KN, Whyte PL, Benson HA, Earl DJ, Smith HA. Changes in forearm blood flow at elevated ambient temperature and their role in the apparent impairment of glucose tolerance. Clin Sci. 1989;76(3):323-328. doi:10.1042/CS0760323
29. Akanji AO, Bruce M, Frayn K, Hockaday TDR, Kaddaha GM. Oral glucose tolerance and ambient temperature in non-diabetic subjects. Diabetologia. 1987;30(6):431-433. doi:10.1007/BF00292547/METRICS
30. Reppas C, Dressman JB. Viscosity modulates blood glucose response to nutrient solutions in dogs. Diabetes Res Clin Pract. 1992;17(2):81-88. doi:10.1016/0168-8227(92)90153-I
31. Reppas C, Adair CH, Barnett JL, et al. High viscosity hydroxypropylmethylcellulose reduces postprandial blood glucose concentrations in NIDDM patients. Diabetes Res Clin Pract. 1993;22(1):61-69. doi:10.1016/0168-8227(93)90133-P
32. Heaton KW, Marcus SN, Emmett PM, Bolton CH. Particle size of wheat, maize, and oat test meals: effects on plasma glucose and insulin responses and on the rate of starch digestion in vitro. Am J Clin Nutr. 1988;47(4):675-682. doi:10.1093/AJCN/47.4.675
33. Cai M, Dou B, Pugh JE, Lett AM, Frost GS. The impact of starchy food structure on postprandial glycemic response and appetite: a systematic review with meta-analysis of randomized crossover trials. Am J Clin Nutr. 2021;114(2):472-487. doi:10.1093/AJCN/NQAB098
34. Behall KM, Scholfield DJ. Food Amylose Content Affects Postprandial Glucose and Insulin Responses. Cereal Chem. 2005;82(6):654-659. doi:10.1094/CC-82-0654
35. Behall KM, Scholfield DJ. Food Amylose Content Affects Postprandial Glucose and Insulin Responses. Cereal Chem. 2005;82(6):654-659. doi:10.1094/CC-82-0654
36. Jenkins AL, Jenkins DJA, Wolever TMS, et al. Comparable Postprandial Glucose Reductions with Viscous Fiber Blend Enriched Biscuits in Healthy Subjects and Patients with Diabetes Mellitus: Acute Randomized Controlled Clinical Trial. Croat Med J. 2008;49(6):772. doi:10.3325/CMJ.2008.49.722
37. Yoshimoto J, Kato Y, Ban M, et al. Palatable Noodles as a Functional Staple Food Made Exclusively from Yellow Peas Suppressed Rapid Postprandial Glucose Increase. Nutrients 2020, Vol 12, Page 1839. 2020;12(6):1839. doi:10.3390/NU12061839
38. Shanita SN, Hasnah H, Khoo CW. Amylose and Amylopectin in Selected Malaysian Foods and its Relationship to Glycemic Index (Amilosa dan Amilopektin dalam Makanan Malaysia Terpilih dan Kaitannya dengan Indeks Glisemik). Sains Malays. 2011;40(8):865-870.
39. Zhu Y, Hsu WH, Hollis JH. The Impact of Food Viscosity on Eating Rate, Subjective Appetite, Glycemic Response and Gastric Emptying Rate. PLoS One. 2013;8(6):e67482. doi:10.1371/JOURNAL.PONE.0067482
40. Shukla AP, Iliescu RG, Thomas CE, Aronne LJ. Food Order Has a Significant Impact on Postprandial Glucose and Insulin Levels. Diabetes Care. 2015;38(7):e98-e99. doi:10.2337/DC15-0429
41. Alsuhaibani AMA. Rheological and Nutritional Properties and Sensory Evaluation of Bread Fortified with Natural Sources of Calcium. J Food Qual. 2018;2018. doi:10.1155/2018/8308361
42. Imai S, Fukui M, Ozasa N, et al. Eating vegetables before carbohydrates improves postprandial glucose excursions. Diabetic Medicine. 2013;30(3):370. doi:10.1111/DME.12073
43. Bae JH, Kim LK, Min SH, Ahn CH, Cho YM. Postprandial glucose-lowering effect of premeal consumption of protein-enriched, dietary fiber-fortified bar in individuals with type 2 diabetes mellitus or normal glucose tolerance. J Diabetes Investig. 2018;9(5):1110-1118. doi:10.1111/JDI.12831
44. Takahashi T, Karita S, Ogawa N, Goto M. Crystalline Cellulose Reduces Plasma Glucose Concentrations and Stimulates Water Absorption by Increasing the Digesta Viscosity in Rats. J Nutr. 2005;135(10):2405-2410. doi:10.1093/JN/135.10.2405
45. Jin Y, Wilde PJ, Hou Y, Wang Y, Han J, Liu W. An evolving view on food viscosity regulating gastric emptying. 2022. doi:10.1080/10408398.2021.2024132
46. Vuksan V, Jenkins AL, Dias AG, et al. Reduction in postprandial glucose excursion and prolongation of satiety: possible explanation of the long-term effects of whole grain Salba (Salvia Hispanica L.). European Journal of Clinical Nutrition 2010 64:4. 2010;64(4):436-438. doi:10.1038/ejcn.2009.159
47. Bipat R, Toelsie JR. Drinking water with consumption of a jelly filled doughnut has a time dependent effect on the postprandial blood glucose level in healthy young individuals. Clin Nutr ESPEN. 2018;27:20-23. doi:10.1016/j.clnesp.2018.07.007
48. Torsdottir I, Andersson H. Effect on the postprandial glycaemic level of the addition of water to a meal ingested by healthy subjects and Type 2 (non-insulin-dependent) diabetic patients. Diabetologia. 1989;32(4):231-235. doi:10.1007/BF00285289/METRICS
49. Sievenpiper JL, Vuksan V, Wong EYY, Mendelson RA, Bruce-Thompson C. Effect of Meal Dilution on the Postprandial Glycemic Response: Implications for glycemic testing. Diabetes Care. 1998;21(5):711-716. doi:10.2337/DIACARE.21.5.711
50. Salari-Moghaddam A, Aslani N, Saneei P, et al. Water intake and intra-meal fluid consumption in relation to general and abdominal obesity of Iranian adults. Nutr J. 2020;19(1):1-8. doi:10.1186/S12937-020-00551-X/TABLES/3
51. Kong H, Yu L, Gu Z, et al. An Innovative Short-Clustered Maltodextrin as Starch Substitute for Ameliorating Postprandial Glucose Homeostasis. J Agric Food Chem. 2021;69(1):354-367. doi:10.1021/ACS.JAFC.0C02828/SUPPL_FILE/JF0C02828_SI_001.PDF
52. Xiu A, Zhou M, Zhu B, Wang S, Zhang J. Rheological properties of Salecan as a new source of thickening agent. Food Hydrocoll. 2011;25(7):1719-1725. doi:10.1016/J.FOODHYD.2011.03.013