The influence of visible light within the solar spectrum: How damaging is it to human skin and is it accounted for in sun protection measures?

Main Article Content

David John Mackay Smith

Abstract

Public health messages clearly state the risks of solar radiation and how the risk can be mitigated. This is supported by the availability of creams that effectively block out the ultraviolet component of solar radiation. Why then does the incidence of skin cancer and particularly melanoma remain so disturbingly high in Caucasian populations?


Almost all organisms on the planet have had to adapt to the presence of solar radiation since the beginning of evolutionary time. There are beneficial effects as well as risks in exposure, not the least of which is that it is the ultimate energy source for living species.


We need to re-examine attitudes and exposure patterns with an appreciation that some exposure is essential for good health. A balance needs to be found between benefits and risks. This can only be done by understanding that there are a range of wavelengths of light with different effects rather than a focus solely on the adverse effects of the ultraviolet component.

Keywords: visible light, influence of visible light, influence of visible light within the solar spectrum, human skin, sun protection, sun protection measures

Article Details

How to Cite
SMITH, David John Mackay. The influence of visible light within the solar spectrum: How damaging is it to human skin and is it accounted for in sun protection measures?. Medical Research Archives, [S.l.], v. 11, n. 6, june 2023. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/3961>. Date accessed: 04 may 2024. doi: https://doi.org/10.18103/mra.v11i6.3961.
Section
Research Articles

References

1. Frederick, J., Snell, H., Haywood, E. Solar ultraviolet radiation at the earth’s surface. 1989. Photochem & Photobiol; 50: 443-570.

2. Diffey, B., Kochevar, I. Basic principles of photobiology. 2007. Photodermatology: 15-17.

3. Tewari, A., Sarkany, R., Young, A. UVA1 induces cyclobutene pyrimidine dimers but not 4-6 photoproducts in human skin in vivo. 2012. J Invest Dermatol; 132: 394-400.

4. Mahmoud B, Hexel C, Hamzavi I, et al. Effects of visible light on the skin. 2008. Photochem. & Photobiol; 84(2): 450-462.

5. Mahmoud B, Ruvolo E, Hexel C, et al. Impact of long wavelength UVA and visible light on melanocompetent skin. 2010. J. Invest. Dermatol; 130(8): pp. 2092-2097.

6. Randhawa, M., Seo, I., Liebel, F., et al. Visible light induces melanogenesis in human skin through a photoadaptive response. 2015. PLOS ONE/DOI:1371/pone 0130949.

7. Ragezzetti, C., Sormani, L., Delayle, D., et al. Melanocytes sense blue light and regulate pigmentation through the opsin-3. 2018. J. Invest. Dermatol.;138:171-178.

8. Monteiro de Assis, L., Tonolli, P., Baptista, M., et al. How does the skin sense sunlight? An integrative view of light sensing molecules. 2021. J Photochem & Photobiol C: photochem reviews; 47. Doi.org/10.1016/j Photochem reviews.2021.10043.

9. Smith, D. Photosensory function, reception and response in human skin. 2021. J Clin Cosmetic Dermatol; 5(2). Doi.org/10.16966/2576.2826.164.

10. Liebel, F, Kaur S, Ruvolo E, et al. Irradiation of skin with visible light induces reactive oxygen species and matrix degrading enzymes. 2012. J Invest Dermatol; 132(7): pp. 1901-1907.

11. Zastrow, L., Lademann, J. Light-instead of UV protection: new requirements for skin cancer protection. 2016. Anticancer research; 36:1389-1394.

12. Vandersee, S., Beyer, M., Ladermann, J., et al. Blue violet light irradiation dose dependently decreases carotenoids in human skin, which indicates the generation of free radicals. 2015. Oxid Med Cell 2015:579675.

13. Tonolli, P., Baptista, M., Chiarelli-Neto, O. Melanin, lipofuscin and the effects of visible light in the skin. 2021. J Photochem & Photobiol 7: 1000044.

14. Menezes, S., Coulomb, B., Lebreton, L., et al. Non-coherent near infrared radiation protects normal human dermal fibroblasts from solar ultraviolet toxicity. 1998. J Invest Dermatol; 111: 629-633.

15. Ito, S., Kolbe, L., Wakamatsu, K., et al. Visible light accelerates the ultraviolet A-induced degeneration of eumelanin and pheomelanin. 2018. DOI:10.1111/pcmc.12754; 32(3):441-447.

16. Abdel-Malek, Z., Knittel, J., Kadekaro, A., et al. The melanocortin 1 receptor and the UV response of human melanocytes -a shift in paradigm. 2008. Photochem & photobiol; 84(2);501-508.

17. Adehmann, C., Trambaurer, A., Chem, B., et al. MFSD12 mediates the import of cysteine into melanosomes and lysosomes. 2010. Nature; 588: 699-704.

18. Herraiz, C., Jiménez-Cervantes, C., Zauna, P., et al. Melanocortin 1 receptor mutants impact differentially on signaling to the cAMP and the ERK 2 mitogen-activating protein kinase pathway. 2009. FEBS letters; 583: 3269-3274.

19. Gonzalez, S., Hegyi, V., Bager, A., et al. Development of cutaneous tolerance to ultraviolet B during ultraviolet B phototherapy. 1996. Photoderm Photoimmunol Photomed; 12(2): 73-78.

20. Sheehan, J., Cragg, N., Chadwick, C. Repeated ultraviolet exposure affords the same protection against DNA photodamage and erythema in human skin type II and IV but is associated with faster DNA repair in skin type IV. 2002. J Invest Dermatol; 118: 825-829.

21. Elwood, J. Melanoma and sun exposure: contrasts between intermittent and chronic exposure. 1992. World J Surg; 16: 157-165.

22. Vuong, K., McGeechan, K., Armstrong, B., et al. Occupational sun exposure and risk of melanoma according to anatomical site. 2014. Int J Cancer; 134(11): 2735-2741.

23. Kricker, A., et al. Early life UV and risk of basal and squamous cell carcinoma in New South Wales, Australia. 2017. Photochem Photobiol; 93(60): 1483-1491.

24. Garmyn, M., Young, A., Miller, S. Mechanisms and variables affecting UVR photoadaption in human skin. 2018. Photochem & Photobiol Sciences; 17: 1932.

25. Gaddameedhi, S., Selby, C., Kaufmann, W., et al. Control of skin cancer by the circadian rhythm. 2011. PNAS; 108(46): 18790-18795.

26. Sancar, A., Lindsay-Boltz, L., Kang, T., et al. Circadian clock control of the cellular response to DNA damage. 2010. FEBS letters; 584:2618-2625.

27. Sarkar, S., Gaddameedhi, S. UV-B-induced erythema in human skin: the circadian clock is ticking. 2018. J. Invest. Dermatol; 138:248-251.

28. Manzella, N., Bracci, M., Strafella, E., et al. Circadian modulation of 8-oxo guanine DNA damage repair. 2015. Sci. Rep. 5 13752; doi: 10.1038/srep13752.

29. Bradford, P., Goldstein, A., Tamara, D. et al. Cancer and neurological degeneration in Xeroderma Pigmentosum: long term follow-up characterises the role of DNA repair. 2011. J. Med. Genetics; 48(3): 168-176.

30. Masri, S., Cervantes, M., Sassone-Corsi, P. The circadian clock and cell cycle: interconnected biological circuits. 2013. Current Opinion in Cell Biol; 25: 730-734.

31. Bjarnsoon, G., Jordan, R., Wood, P., et al. Circadian expression of clock genes in human oral mucosa and skin: association with specific cell-cycle phases. 2001. Am. J. of Path; 158(5): 1793-1801.

32. Laranjeiro, R., Tamal, K., Peyric, E. et al. Cyclin-dependent kinase inhibitor p20 controls circadian cell-cycle timing. 2013. PNAS; 110(17): 6835-6840.

33. Matsuo, T. et al. Control mechanisms of the circadian clock for timing of cell division in vivo. 2003. Science; 302: 255-259.

34. Geyfman, M. et al. Brain and muscle Arnt-like protein-1 (BMAL1) controls circadian cell proliferation and susceptibility to UVB-induced DNA damage in the epidermis. 2012. Proc. Nat. Acad. Sci. USA; 109: 11758-11763.

35. Damiola, F. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. 2000. Genes Dev; 14: 2950-2961.

36. Wolff, G., Esser, K. Scheduled exercise phase shifts the circadian clock in skeletal muscle. 2012. Sci. Sports Exerc; Med; 44: 1663-1670.

37. Brainard, G., Lewy, A., Menaker, M., et al. Effect of light wavelength on the suppression of nocturnal plasma melatonin in normal volunteers. 1985. Ann N Y Acad Sci; 453: 376-378.

38. Gooley, J., Chamberlain, K., Smith, K., et al. Exposure to room light before bedtime suppresses melatonin onset and duration in humans. 2011. J Clin Endo Metab; 96: E463-E472.

39. Emmer, K., Russart, G., Walker, W., et al. Effects of light at night on laboratory animals and research outcomes. 2018. Behav Neurosci; 132: 302-314.

40. Fonken, L., Nelson, R. The effect of light at night on the circadian clock and metabolism. 2014. Endcr Rev; 35(4): 648-670.

41. Hansen, J. Increased breast cancer risk among women who work predominantly at night. 2001. Epidemiology; 12: 74-77.

42. Davis, S., Mirick, D., Stevens, R. Night shift work, light at night and the risk of breast cancer. 2001. J Natl Cancer Inst; 73: 1557-1562.

43. Schernhammer, E., Laden, F., Speizer, F. Rotating night shifts and risk of breast cancer in women participating in the nurses’ health study. 2001. J Natl Cancer Inst; 93: 1563-1568.

44. Kubo, T., Ozasa, K., Mikain, K., et al. Prospective cohort study of the risk of prostate cancer among rotating shift workers: Findings from the Japan collaborative study. 2006. Am J Epidemiol; 164: 549-555.

45. Ayesha, A., McNair, C., McCann, J., et al. The circadian cryptochrome, CRY1, is a pro-tumorigenic factor that rhythmically modulates DNA repair. 2021. Doi.org/ 10.1038/s41467-020-20513-5.

46. Chang, y., Barrett, T., Bishop, D et al. Sun exposure and melanoma risk at different latitudes: a pooled analysis of 5700 cases and 7216 controls. 2009. Int. J. Epidemiol; 38:814-830.

47. Gandini, S., Sera, F., Cattaruzza, M., et al. Meta-analysis of risk factors cutaneous melanoma II sun exposure. 2005. Euro. J. Cancer; 41: 45-60.

48. Reichrath, J., Rech, M., Moeini, M., et al. In vitro comparison to the endocrine system in 1,25(OH)2D3-responsive and -resistant melanoma cells. 2007. Cancer Biol. Ther; 6: 48-55.

49. Newton-Bishop, J., Beswick, S., Randerson-Moor, J., et al. Serum 25 hydroxyvitamin D3 levels are associated with Breslow thickness at presentation and survival from melanoma. 2009. J. Clinic. Oncol; 27: 5439-5444.

50. Nümberg, B., Gröber, S., Gärtner, B., et al. Reduced serum 25OH vitamin D levels in stage IV melanoma patients. 2009. Anticancer Res; 29: 3669-74.

51. Fields, S., Davies, J., Bishop, T., et al. Vitamin D and melanoma. 2013. Dermatol.-Endo; 5(1): 121-129.