Femtosecond Laser Applications in Ophthalmic Surgery
Main Article Content
Abstract
Femtosecond laser’s ultra-fast pulse duration results in a precise cut with low thermal energy. This precise and directed energy with low collateral tissue damage has been shown to be advantageous for ocular surgery with proven safety and reproducibility. The history and science, of femtosecond lasers as well as their evolution in eye surgery is discussed. The practical and current use of femtosecond laser in eye surgery is presented including its application in laser assisted cataract surgery, laser assisted ketatomileusis flap creation, intracorneal ring segment placement, femtosecond lenticle extraction, small incision lenticle extraction, creation of tunnels for presbyopic correcting corneal inlays, and femtosecond laser assisted penetrating keratoplasty. In each of these applications, the benefits and risks of the femtosecond laser procedure are reviewed and potential future applications of femtosecond in the field of Ophthalmic Surgery are discussed.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Assonov SS. Chapter 6 - Oxygen. In: Groot PAd, ed. Handbook of Stable Isotope Analytical Techniques. Elsevier; 2009:405-618.
3. Denk W, Strickler JH, Webb WW. Two-photon laser scanning fluorescence microscopy. Science. 1990;248(4951):73-6. doi:10.1126/science.2321027
4. Chung SH, Mazur E. Surgical applications of femtosecond lasers. J Biophotonics. 2009;2(10):557-72. doi:10.1002/jbio.200910053
5. Soong HK, Malta JB. Femtosecond lasers in ophthalmology. Am J Ophthalmol. Feb 2009;147(2):189-197 e2. doi:10.1016/j.ajo.2008.08.026
6. Aron-Rosa D, Aron JJ, Griesemann M, Thyzel R. Use of the neodymium-YAG laser to open the posterior capsule after lens implant surgery: a preliminary report. J Am Intraocul Implant Soc. 1980;6(4):352-4. doi:10.1016/s0146-2776(80)80036-x
7. Latz C, Asshauer T, Rathjen C, Mirshahi A. Femtosecond-Laser Assisted Surgery of the Eye: Overview and Impact of the Low-Energy Concept. Micromachines (Basel). Jan 24 2021;12(2)doi:10.3390/mi12020122
8. Birngruber R, Puliafito C, Gawande A, Lin W-Z, Schoenlein R, Fujimoto J. Femtosecond laser-tissue interactions: Retinal injury studies. IEEE Journal of Quantum Electronics. 1987:1836-1844. doi:10.1109/jqe.1987.1073235
9. Juhasz T, Loesel F, Kurtz R, Horvath C, Bille J, Mourou G. Corneal refractive surgery with femtosecond lasers. IEEE Journal on Selected Topics in Quantum Electronics. 1999;5(4)
10. You R, Liu YQ, Hao YL, Han DD, Zhang YL, You Z. Laser Fabrication of Graphene-Based Flexible Electronics. Adv Mater. 2020;32(15). e1901981. doi:10.1002/adma.201901981
11. Stern D, Schoenlein RW, Puliafito CA. Corneal Ablation by Nanosecond, Picosecond, and Femtosecond Lasers at 532 and 625 nm. Arch Ophthalm. 1989;4(107). doi:10.1001/archopht.1989.01070010601038
12. Schweitzer C, Brezin A, Cochener B, et al. Femtosecond laser-assisted versus phacoemulsification cataract surgery (FEMCAT): a multicentre participant-masked randomised superiority and cost-effectiveness trial. Lancet. 2020;295(10219):212-24.
13. Gavris MM, Belicioiu R, Olteanu I, Horge I. The Advantages of Femtosecond Laser-Assisted Cataract Surgery. Rom J Ophthalmol. 2015;59(1):38-42.
14. Srujana D, Singh R, Titiyal JS, Sinha R. Assessment of posture-induced cyclotorsion during cataract surgery using the Verion image-guided system. Med J Armed Forces India. 2021;77(3):293-296. doi:10.1016/j.mjafi.2020.08.014
15. Abouzeid H, Ferrini W. Femtosecond-laser assisted cataract surgery: a review. Acta Ophthalmol. 2014;92(7):597-603. doi:10.1111/aos.12416
16. Medhi S, Senthil Prasad R, Pai A, et al. Clinical outcomes of femtosecond laser-assisted cataract surgery versus conventional phacoemulsification: A retrospective study in a tertiary eye care center in South India. Indian J Ophthalmol. 2022;70(12):4300-4305. doi:10.4103/ijo.IJO_802_22
17. Guo H, Hosseini-Moghaddam, S.M. & Hodge W. Corneal biomechanical properties after SMILE versus FLEX, LASIK, LASEK, or PRK: a systematic review and meta-analysis. BMC Ophthalmol. 2019;19(1). doi:10.1186/s12886-019-1165-3
18. Chen Z, Wu Y, Sun Y, Kong L, Chen M, Liu Z. Adjusted femtosecond laser capsulotomy distance in white cataracts to decrease incomplete capsulotomy: a randomized comparative cohort study. Graefes Arch Clin Exp Ophthalmol. 2022;260(8):2591-2595. doi:10.1007/s00417-022-05630-9
19. Bellini LP, Brum GS, Grossi RS, Borowsky C. Cataract surgery complication rates. Ophthalmology. 2008;115(8):1432; author reply 1432-3. doi:10.1016/j.ophtha.2008.04.009
20. Saeedi OJ, Chang LY, Ong SR, et al. Comparison of cumulative dispersed energy (CDE) in femtosecond laser-assisted cataract surgery (FLACS) and conventional phacoemulsification. Int Ophthalmol. 2019;39(8):1761-1766. doi:10.1007/s10792-018-0996-x
21. Hayashi K, Hayashi H, Nakao F, Hayashi F. Risk factors for corneal endothelial injury during phacoemulsification. J Cataract Refract Surg. 1996;22(8):1079-84. doi:10.1016/s0886-3350(96)80121-0
22. Richard J, Hoffart L, Chavane F, Ridings B, Conrath J. Corneal endothelial cell loss after cataract extraction by using ultrasound phacoemulsification versus a fluid-based system. Cornea. 2008;27(1):17-21. doi:10.1097/ICO.0b013e3181583115
23. Johansson B, Lundstrom M, Montan P, Stenevi U, Behndig A. Capsule complication during cataract surgery: Long-term outcomes: Swedish Capsule Rupture Study Group report 3. J Cataract Refract Surg. 2009;35(10):1694-8. doi:10.1016/j.jcrs.2009.05.027
24. Chen M, Swinney C, Chen M. Comparing the intraoperative complication rate of femtosecond laser-assisted cataract surgery to traditional phacoemulsification. Int J Ophthalmol. 2015;8(1):201-3. doi:10.3980/j.issn.2222-3959.2015.01.34
25. Abell RG, Darian-Smith E, Kan JB, Allen PL, Ewe SY, Vote BJ. Femtosecond laser-assisted cataract surgery versus standard phacoemulsification cataract surgery: outcomes and safety in more than 4000 cases at a single center. J Cataract Refract Surg. 2015;41(1):47-52. doi:10.1016/j.jcrs.2014.06.025
26. Wang J, Su F, Wang Y, Chen Y, Chen Q, Li F. Intra and post-operative complications observed with femtosecond laser-assisted cataract surgery versus conventional phacoemulsification surgery: a systematic review and meta-analysis. BMC Ophthalmol. 2019;19(1):177. doi:10.1186/s12886-019-1190-2
27. Roberts HW, Day AC, and O’Brart DP. Femtosecond laser-assisted cataract surgery: A review. Eur J Ophthalmol. 2020;30(3):417-429.
28. Khan MI, Muhtaseb M. Prevalence of corneal astigmatism in patients having routine cataract surgery at a teaching hospital in the United Kingdom. J Cataract Refract Surg. 2011;37(10):1751-5. doi:10.1016/j.jcrs.2011.04.026
29. Ruckl T, Dexl AK, Bachernegg A, et al. Femtosecond laser-assisted intrastromal arcuate keratotomy to reduce corneal astigmatism. J Cataract Refract Surg. 2013;39(4):528-38. doi:10.1016/j.jcrs.2012.10.043
30. Visser N, Beckers HJ, Bauer NJ, et al. Toric vs aspherical control intraocular lenses in patients with cataract and corneal astigmatism: a randomized clinical trial. JAMA Ophthalmol. 2014;132(12):1462-8. doi:10.1001/jamaophthalmol.2014.3602
31. Wendelstein JA, Hoffmann PC, Mariacher S, et al. Precision and refractive predictability of a new nomogram for femtosecond laser-assisted corneal arcuate incisions. Acta Ophthalmol. 2021;99(8):e1297-e1306. doi:10.1111/aos.14837
32. Viestenz A, Seitz B, Langenbucher A. Evaluating the eye's rotational stability during standard photography: effect on determining the axial orientation of toric intraocular lenses. J Cataract Refract Surg. 2005;31(3):557-61. doi:10.1016/j.jcrs.2004.07.019
33. Felipe A, Artigas JM, Diez-Ajenjo A, Garcia-Domene C, Alcocer P. Residual astigmatism produced by toric intraocular lens rotation. J Cataract Refract Surg. 2011;37(10):1895-901. doi:10.1016/j.jcrs.2011.04.036
34. Hill W, Potvin R. Monte Carlo simulation of expected outcomes with the AcrySof toric intraocular lens. BMC Ophthalmol. 2008;8:22. doi:10.1186/1471-2415-8-22
35. Osher RH. Iris fingerprinting: new method for improving accuracy in toric lens orientation. J Cataract Refract Surg. 2010;36(2):351-2. doi:10.1016/j.jcrs.2009.09.021
36. Kessel L, Andresen J, Tendal B, Erngaard D, Flesner P, Hjortdal J. Toric Intraocular Lenses in the Correction of Astigmatism During Cataract Surgery: A Systematic Review and Meta-analysis. Ophthalmology. 2016;123(2):275-286. doi:10.1016/j.ophtha.2015.10.002
37. Maedel S, Hirnschall N, Chen YA, Findl O. Rotational performance and corneal astigmatism correction during cataract surgery: aspheric toric intraocular lens versus aspheric nontoric intraocular lens with opposite clear corneal incision. J Cataract Refract Surg. 2014;40(8):1355-62. doi:10.1016/j.jcrs.2013.11.039
38. Nagy ZZ, Filkorn T, Takacs AI, et al. Anterior segment OCT imaging after femtosecond laser cataract surgery. J Refract Surg. 2013;29(2):110-2. doi:10.3928/1081597X-20130117-05
39. Hummel CD, Diakonis VF, Desai NR, Arana A, Weinstock RJ. Cyclorotation during femtosecond laser-assisted cataract surgery measured using iris registration. J Cataract Refract Surg. 2017;43(7):952-955. doi:10.1016/j.jcrs.2017.04.034
40. Mingo-Botin D, Munoz-Negrete FJ, Won Kim HR, Morcillo-Laiz R, Rebolleda G, Oblanca N. Comparison of toric intraocular lenses and peripheral corneal relaxing incisions to treat astigmatism during cataract surgery. J Cataract Refract Surg. 2010;36(10):1700-8. doi:10.1016/j.jcrs.2010.04.043
41. Gonzalez-Cruces T, Cano-Ortiz A, Sanchez-Gonzalez M and Sanchez-Gonzalez J. Cataract surgery astigmatism incisional management. Manual relaxing incision versus femtosecond laser-assisted arcuate keratometry. A systematic review. Graefes Arch Clin Exp Ophthalmol. 2022;260(11):3437-52.
42. Chan TC, Cheng GP, Wang Z, Tham CC, Woo VC, Jhanji V. Vector Analysis of Corneal Astigmatism After Combined Femtosecond-Assisted Phacoemulsification and Arcuate Keratotomy. Am J Ophthalmol. 2015;160(2):250-255 e2. doi:10.1016/j.ajo.2015.05.004
43. Wang J, Zhao J, Xu J, Zhang J. Evaluation of the effectiveness of combined femtosecond laser-assisted cataract surgery and femtosecond laser astigmatic keratotomy in improving post-operative visual outcomes. BMC Ophthalmol. 2018;18(1):161. doi:10.1186/s12886-018-0823-1
44. Baharozian CJ, Song C, Hatch KM, Talamo JH. A novel nomogram for the treatment of astigmatism with femtosecond-laser arcuate incisions at the time of cataract surgery. Clin Ophthalmol. 2017;11:1841-48. doi:10.2147/OPTH.S141255
45. Rani K, Grover AK, Singh AK, Grover T, Garg SP. Correction of preexisting astigmatism by penetrating arcuate keratotomy in femtosecond laser-assisted cataract surgery. Indian J Ophthalmol. 2020;68(8):1569-72. doi:10.4103/ijo.IJO_2060_19
46. Chen W, Ji M, Wu J, et al. Effect of femtosecond laser-assisted steepest-meridian clear corneal incisions on preexisting corneal regular astigmatism at the time of cataract surgery. Int J Ophthalmol. 2020;13(12):1895-1900. doi:10.18240/ijo.2020.12.08
47. Sanmillan IL, Thumann G, Kropp M, Cvejic Z, Pajic B. Predictability of Astigmatism Correction by Arcuate Incisions with a Femtosecond Laser Using the Gaussian Approximation Calculation. Micromachines (Basel). May 7 2023;14(5). doi:10.3390/mi14051009
48. Roberts HW, Wagh VK, Sullivan DL, Archer TJ, O'Brart DPS. Refractive outcomes after limbal relaxing incisions or femtosecond laser arcuate keratotomy to manage corneal astigmatism at the time of cataract surgery. J Cataract Refract Surg. 2018;44(8):955-963. doi:10.1016/j.jcrs.2018.05.027
49. Day AC, Lau NM, Stevens JD. Nonpenetrating femtosecond laser intrastromal astigmatic keratotomy in eyes having cataract surgery. J Cataract Refract Surg. 2016;42(1):102-9. doi:10.1016/j.jcrs.2015.07.045
50. Trokel SL, Srinivasan R, Braren B. Excimer laser surgery of the cornea. Am J Ophthalmol. 1983;96(6):710-5. doi:10.1016/s0002-9394(14)71911-7
51. Woreta FA, Gupta A, Hochstetler B, Bower KS. Management of post-photorefractive keratectomy pain. Survey of Ophthalmology. 2013;58(6):529-535.
52. Tomas-Juan J, Murueta-Goyena Larranaga A, Hanneken L. Corneal Regeneration After Photorefractive Keratectomy: A Review. J Optom. 2015;8(3):149-69. doi:10.1016/j.optom.2014.09.001
53. Somani SN, Moshirfar M, Patel BC. Photorefractive Keratectomy. StatPearls. 2023.
54. Sutton G, Hodge C. Accuracy and precision of LASIK flap thickness using the IntraLase femtosecond laser in 1000 consecutive cases. J Refract Surg. 2008;24(8):802-806.
55. Steinberg J, Mehlan J, Mudarisov B, et al. Safety and Precision of Two Different Flap-morphologies Created During Low Energy Femtosecond Laser-assisted LASIK. J Ophthalmic Vis Res. 2023;18(1):3-14. doi:10.18502/jovr.v18i1.12720
56. Wen D, McAlinden C, Flitcroft I, et al. Postoperative Efficacy, Predictability, Safety, and Visual Quality of Laser Corneal Refractive Surgery: A Network Meta-analysis. Am J Ophthalmol. 2017;178:65-78. doi:10.1016/j.ajo.2017.03.013
57. Santhiago MR, Kara-Junior N, Waring GOt. Microkeratome versus femtosecond flaps: accuracy and complications. Curr Opin Ophthalmol. 2014;25(4):270-4. doi:10.1097/ICU.0000000000000070
58. Eldaly ZH, Abdelsalam MA, Hussein MS, Nassr MA. Comparison of Laser In Situ Keratomileusis Flap Morphology and Predictability by WaveLight FS200 Femtosecond Laser and Moria Microkeratome: An Anterior Segment Optical Coherence Tomography Study. Korean J Ophthalmol. 2019;33(2):113-121. doi:10.3341/kjo.2018.0035
59. Kanclerz P, Khoramnia R. Flap Thickness and the Risk of Complications in Mechanical Microkeratome and Femtosecond Laser In Situ Keratomileusis: A Literature Review and Statistical Analysis. Diagnostics (Basel). Aug 31 2021;11(9)doi:10.3390/diagnostics11091588
60. Eleftheriadis H, Prandi B, Diaz-Rato A, Morcillo M, Sabater JB. The effect of flap thickness on the visual and refractive outcome of myopic laser in situ keratomileusis. Eye (Lond). 2005;19(12):1290-6. doi:10.1038/sj.eye.6701775
61. Shemesh G, Dotan G, Lipshitz I. Predictability of corneal flap thickness in laser in situ keratomileusis using three different microkeratomes. J Refract Surg. 2002;18(3 Suppl):S347-51. doi:10.3928/1081-597X-20020502-13
62. Solomon KD, Donnenfeld E, Sandoval HP, et al. Flap thickness accuracy: comparison of 6 microkeratome models. J Cataract Refract Surg. 2004;30(5):964-77. doi:10.1016/j.jcrs.2004.01.023
63. Reinstein DZ, Archer TJ, Gobbe M. Accuracy and reproducibility of cap thickness in small incision lenticule extraction. J Refract Surg. 2013;29(12):810-5. doi:10.3928/1081597X-20131023-02
64. Zhai CB, Tian L, Zhou YH, Zhang QW, Zhang J. Comparison of the flaps made by femtosecond laser and automated keratomes for sub-bowman keratomileusis. Chin Med J. 2013;126(13):2440-44.
65. Salomão MQ, Ambrosio R Jr, Wilson SE. Dry eye associated with laser in situ keratomileusis: mechanical microkeratome versus femtosecond laser. J Cataract Refract Surg. 2009;35(10):1756-1760.
66. Ang M, Gatinel D, Reinstein DZ, Mertens E, Alio Del Barrio JL, Alio JL. Refractive surgery beyond 2020. Eye. 2021;35(2):362-82. doi:10.1038/s41433-020-1096-5
67. Stahl JE, Durrie DS, Schwendeman FJ, Boghossian AJ. Anterior segment OCT analysis of thin IntraLase femtosecond flaps. J Refract Surg. 2007;23(6):555-558.
68. Medeiros FW, Stapleton WM, Hammel J, Krueger RR, Netto MV, Wilson SE. Wavefront analysis comparison of LASIK outcomes with the femtosecond laser and mechanical microkeratomes. J Refract Surg. 2007;23(9):880-887.
69. Kim JY, Kim MJ, Kim T-I, Choi HJ, Pak JH, Tchah H. A femto-second laser creates a stronger flap than a mechanical microkeratome. Invest Ophthalmol Vis Sci. 2006;47(2):599-604.
70. Netto MV, Mohan RR, Medeiros FW, et al. Femtosecond laser and microkeratome corneal flaps:comparison of stromal wound healing and infl ammation. J Refract Surg. 2007;23(7):667-676.
71. Kancierz P and Khoramnia R. Flap thickness and the risk of complications in mechanical microkeratome and femtosecond laser in situ keratomileusis: a literature review and statistical analysis. Diagnostics. 2021;11(9):1588.
72. Alio del Barrio JL, Milan-Castillo R, Canto-Cerdan M et al. FS-LASIK for the treatment of moderate-to-high hyperopia. Journal of Cataract and Refractive Surgery. 2023;49(6):558-564.
73. Sahay P, Bafna RK, Reddy JC, Vajpayee RB, Sharma N. Complications of laser-assisted in situ keratomileusis. Indian J Ophthalmol. 2021;69(7):1658-1669. doi:10.4103/ijo.IJO_1872_20
74. dos Santos AM, Torricelli AA, Marino GK, et al. Femtosecond Laser-Assisted LASIK Flap Complications. J Refract Surg. 2016;32(1):52-9. doi:10.3928/1081597X-20151119-01
75. Seider MI, Ide T, Kymionis GD, Culbertson WW, O'Brien TP, Yoo SH. Epithelial breakthrough during IntraLase flap creation for laser in situ keratomileusis. J Cataract Refract Surg. 2008;34(5):859-63. doi:10.1016/j.jcrs.2007.12.043
76. Liu Q, Gong XM, Chen JQ, Yang B, Ge J, To CH. Laser in situ keratomileusis induced corneal perforation and recurrent corneal epithelial ingrowth. J Cataract Refract Surg. 2005;31(4):857-9. doi:10.1016/j.jcrs.2004.09.027
77. Davison JA, Johnson SC. Intraoperative complications of LASIK flaps using the IntraLase femtosecond laser in 3009 cases. J Refract Surg. 2010;26(11):851-7. doi:10.3928/1081597X-20100114-07
78. Dada T, Sharma N, Vaypayee RB, Dada VK. Subconjuctival hemorrhages after LASIK. Laser in situ keratomileusis. J Cataract Refract Surg. 2000;26(11):1570-71. doi:10.1016/s0886-3350(00)00725-2
79. Tse SM, Farley ND, Tomasko KR, Amin SR. Intraoperative LASIK Complications. Int Ophthalmol Clin. 2016;56(2):47-57. doi:10.1097/IIO.0000000000000110
80. Lim DH, Hyun J, Shin E, Ko BW, Chung ES, Chung TY. Incidence and Risk Factors of Opaque Bubble Layer Formation According to Flap Thickness During 500-kHz FS-LASIK. J Refract Surg. 2019;35(9):583-589. doi:10.3928/1081597X-20190814-01
81. Wang Z, Cheng X, Lou X, et al. VisuMax Flap 2.0: a flap plus technique to reduce incidence of an opaque bubble layer in femtosecond laser-assisted LASIK. Graefes Arch Clin Exp Ophthalmol. 2023;261(4):1187-1194. doi:10.1007/s00417-022-05894-1
82. Rabinowitz YS. Keratoconus. Surv Ophthalmol. 1998;42(4):297-319. doi:10.1016/s0039-6257(97)00119-7
83. Sakellaris D, Balidis M, Gorou O, et al. Intracorneal Ring Segment Implantation in the Management of Keratoconus: An Evidence-Based Approach. Ophthalmol Ther. 2019;8(Suppl 1):5-14. doi:10.1007/s40123-019-00211-2
84. Ruckhofer J, Stoiber J, Alzner E, Grabner G, Multicenter European Corneal Correction Assessment Study G. One year results of European Multicenter Study of intrastromal corneal ring segments. Part 2: complications, visual symptoms, and patient satisfaction. J Cataract Refract Surg. 2001;27(2):287-96. doi:10.1016/s0886-3350(00)00740-9
85. Zare MA, Hashemi H, Salari MR. Intracorneal ring segment implantation for the management of keratoconus: safety and efficacy. J Cataract Refract Surg. 2007;33(11):1886-91. doi:10.1016/j.jcrs.2007.06.055
86. Kanellopoulos AJ, Pe LH, Perry HD, Donnenfeld ED. Modified intracorneal ring segment implantations (INTACS) for the management of moderate to advanced keratoconus: efficacy and complications. Cornea. 2006;25(1):29-33. doi:10.1097/01.ico.0000167883.63266.60
87. Colin J, Cochener B, Savary G, Malet F. Correcting keratoconus with intracorneal rings. J Cataract Refract Surg. 2000;26(8):1117-22. doi:10.1016/s0886-3350(00)00451-x
88. Silvestrini A. A GEOMETRIC MODEL TO PREDICT THE CHANGE IN CORNEAL CURVATURE FROM THE INTRASTROMAL CORNEAL RING (ICR (R)). Invest Ophthalmol Vis Sci. 1994;35(4).
89. Coskunseven E, Kymionis GD, Tsiklis NS, et al. Complications of intrastromal corneal ring segment implantation using a femtosecond laser for channel creation: a survey of 850 eyes with keratoconus. Acta Ophthalmol. 2011;89(1):54-57. doi:10.1111/j.1755-3768.2009.01605.x
90. Mistlberger A, Liebmann JM, Tschiderer H, Ritch R, Ruckhofer J, Grabner G. Diode laser transscleral cyclophotocoagulation for refractory glaucoma. J Glaucoma. 2001;10(4):288-293. doi:10.1097/00061198-200108000-00008
91. Kanellopoulos AJ, Pe LH, Perry HD, Donnenfeld ED. Modified intracorneal ring segment implantations (INTACS) for the management of moderate to advanced keratoconus: efficacy and complications. Cornea. 2006;25(1):29-33. doi:10.1097/01.ico.0000167883.63266.60
92. Zare MA, Hashemi H & Salari MR. Intracorneal ring segment implantation for the management of keratoconus: safety and efficacy. J Cataract Refract Surg. 2007;33:1886–91.
93. Sogutlu E, Pinero DP, Kubaloglu A, Alio JL, Cinar Y. Elevation changes of central posterior corneal surface after intracorneal ring segment implantation in keratoconus. Cornea. 2012;31(4):387-95.
94. Kubaloglu A, Sari ES, Cinar Y, et al. Comparison of mechanical and femtosecond laser tunnel creation for intrastromal corneal ring segment implantation in keratoconus: prospective randomized clinical trial. J Cataract Refract Surg. 2010;36(9):1556-61.
95. Struckmeier AK, Hamon L, Flockerzi E, Munteanu C, Seitz B, Daas L. Femtosecond Laser and Mechanical Dissection for ICRS and MyoRing Implantation: A Meta-Analysis. Cornea. 2022;41(4):518-537.
96. Reinstein DZ, Archer TJ, Gobbe M. Small incision lenticule extraction (SMILE) history, fundamentals of a new refractive surgery technique and clinical outcomes. Eye Vis. 2014;1:3.
97. Sekundo W, Kunert K, Russmann C, et al. First efficacy and safety study of femtosecond lenticule extraction for the correction of myopia: six-month results. J Cataract Refract Surg. 2008;34(9):1513-20. doi:10.1016/j.jcrs.2008.05.033
98. Shah R, Shah S. Effect of scanning patterns on the results of femtosecond laser lenticule extraction refractive surgery. J Cataract Refract Surg. 2011;37(9):1636-47. doi:10.1016/j.jcrs.2011.03.056
99. Dr. Jochen Tham./ Carl Zeiss Meditec AG (05 October 2018). ZEISS Receives FDA Approval for ReLEx SMILE. Retrieved from http://https://www.zeiss.com/meditec-ag/media-news/press-releases-hcp/2018/fda-approval-for-smile-astigmatism.html.
100. Wang, Yan MD, PhD; Ma, Jiaonan MD. Future Developments in SMILE: Higher Degree of Myopia and Hyperopia. Asia-Pacific Journal of Ophthalmology. 2019;8(5):412-416. DOI: 10.1097/01.APO.0000580128.27272.bb
101. Xu Y, Yang Y. Dry eye after small incision lenticule extraction and LASIK for myopia. J Refract Surg. 2014;30(3):186-90. doi:10.3928/1081597X-20140219-02
102. Huang G and Melki S. Small incision lenticle extraction (SMILE): myths and realities. Semin Ophthalmol. 2021;36(4):140-148.
103. Shen Z, Shi K, Yu Y, et al. Small incision lenticle extraction (SMILE) versus femto-second laser-assisted in situ keratomileusis (FS-LASIK) for myopia: a systematic review and meta-analysis. PLos One. 2016;11(7).
104. Yu M, Chen M, Liu W, Dai J. Comparative study of wave-front aberration and corneal Asphericity after SMILE and LASEK for myopia: a short and long term study. BMC Ophthalmol. 2019;19(1):80. doi:10.1186/s12886-019-1084-3
105. Gyldenkerne A, Ivarsen A, Hjortdal JO. Comparison of corneal shape changes and aberrations induced By FS-LASIK and SMILE for myopia. J Refract Surg. 2015;31(4):223-29. doi:10.3928/1081597X-20150303-01
106. Pedersen IB, Ivarsen A, Hjortdal J. Changes in Astigmatism, Densitometry, and Aberrations After SMILE for Low to High Myopic Astigmatism: A 12-Month Prospective Study. J Refract Surg. 2017;33(1):11-17. doi:10.3928/1081597X-20161006-04
107. Chow SSW, Chow LLW, Lee CZ, Chan TCY. Astigmatism Correction Using SMILE. Asia Pac J Ophthalmol. 2019;8(5):391-396.
108. Titiyal JS, Kaur M, Rathi A, Falera R, Chaniyara M, Sharma N. Learning Curve of Small Incision Lenticule Extraction: Challenges and Complications. Cornea. 2017;36(11):1377-1382. doi:10.1097/ICO.0000000000001323
109. Lau YTY, Shih KC, Tse RHK et al. Comparison of visual, refractive and ocular surface outomes between small incision lenticule extraction and laser-assisted in situ keratomileusis for myopia and myopia astigmatism. Ophthalmol Ther. 2019;8(3):373-386.
110. Li M, Zhao J, Miao H, et al. Mild decentration measured by a Scheimpflug camera and its impact on visual quality following SMILE in the early learning curve. Invest Ophthalmol Vis Sci. 2014;55(6):3886-92. doi:10.1167/iovs.13-13714
111. Chan TCY, Ng ALK, Cheng GPM, et al. Effect of the Learning Curve on Visual and Refractive Outcomes of Small-Incision Lenticule Extraction. Cornea. 2017;36(9):1044-1050. doi:10.1097/ICO.0000000000001246
112. F. Riau AK, Htoon HM, Del Barrio JLA et al. Femtosecond laser-assisted stromal keratophakia for keratoconus: A systemic review and meta-analysis. Rev Int Ophthalmol. 2021;41(5):1965-1979.
113. Pant OP, Hao JL, Zhou DD, Wang F, Lu CW. A novel case using femtosecond laser-acquired lenticule for recurrent pterygium: case report and literature review. J Int Med Res. 2018;46(6):2474-2480. doi:10.1177/0300060518765303
114. Moshirfar M, Henrie MK, Payne CJ, et al. Review of Presbyopia Treatment with Corneal Inlays and New Developments. Clin Ophthalmol. 2022;16:2781-95.
115. Corneal Inlays: Current and Future Designs. CRSToday. Accessed August 17, 2023. https://crstoday.com/articles/2013-jun/corneal-inlays-current-and-future-designs.
116. Papadopoulos PA, Papadopoulos AP. Current management of presbyopia. Middle East Afr J Ophthalmol. 2014;21(1):10-7. doi:10.4103/0974-9233.124080
117. Dexl AK, Jell G, Strohmaier C, et al. Long-term outcomes after monocular corneal inlay implantation for the surgical compensation of presbyopia. J Cataract Refract Surg. 2015;41(3):566-75. doi:10.1016/j.jcrs.2014.05.051
118. Moshirfar M, Desautels JD, Wallace RT, Koen N, Hoopes PC. Comparison of FDA safety and efficacy data for KAMRA and Raindrop corneal inlays. Int J Ophthalmol. 2017;10(9):1446-51. doi:10.18240/ijo.2017.09.18
119. Moarefi MA, Bafna S, Wiley W. A Review of Presbyopia Treatment with Corneal Inlays. Ophthalmol Ther. 2017;6(1):55-65. doi:10.1007/s40123-017-0085-7
120. Scott Carlisle./ CorneaGen (February 23, 2021). MR Conditional Letter Signed. Retrieved from https://corneagen.com/wp-content/uploads/2021/02/MR-Conditional-Letter-signed.pdf.
121. ReVision Optics (November 13, 2018). Class 1 Device Recall Raindrop Near Vision Inlay. Retrieved from https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRes/res.cfm?ID=169984
122. Garza EB, Gomez S, Chayet A, Dishler J. One-year safety and efficacy results of a hydrogel inlay to improve near vision in patients with emmetropic presbyopia. J Refract Surg. 2013;29(3):166-72. doi:10.3928/1081597X-20130129-01
123. Busin M. A new lamellar wound configuration for penetrating keratoplasty surgery. Arch Ophthalmol. 2003;121:260-265.
124. Ignacio TS, Nguyen TB, Chuck RS et al. Top hat wound configuration for penetrating keratoplasty using the femtosecond laser: a laboratory model. Cornea. 2006;25:336-340.
125. Buratto L and Bohm E. The use of femtosecond laser in penetrating keratoplasty. Am J Ophthalm. 2007;143(5):737-742.
126. Chan C, Ritenour R, Kumar N et al. Femtosecond laser-assisted mushroom configuration deep anterior lamellar keratoplasty. Cornea. 2010;29(3):290-295.
127. Gaster RN, Dumitrascu O, Rabinowitz YS. Penetrating keratoplasty using femtosecond laser-enabled keratoplasty with zig-zag incisions versus a mechanical trephine in patients with keratoconus. Br J Ophthalmol. 2013;96(9):1195-1199.
128. Deshmukh R, Stevenson LJ and Vajpayee RB. Laser-assisted cornealtransplantation surgery. Surv Ophthalmolol. 2021;66(5): 826-837.
129. Peng W-Y, Tang Z-M, Lian X-F, and Zhou S-Y. Comparing the efficacy and safety of femtosecond laser-assisted vs conventional penetrating keratoplasty: a meta-analysis of comparative studies. Int Ophthalmol. 2021;41(8):2913-2923.