Unraveling the Challenges in the Retinoid-related Orphan Receptor (ROR)-y(t) Therapeutic Landscape for Autoimmune Diseases

Main Article Content

Daliya Banerjee


RORyt/y driven type-17 “pro-inflammatory “gene expression profile has been implicated in the pathogenesis of several human immune-mediated diseases and remains a compelling target for therapeutic intervention. However, several challenges, from both drug discovery and biology standpoint, have made it intractable. While biologics targeting IL-23, IL-17, IL-17R, and other cytokines in the ROR pathway have demonstrated clinical efficacy in psoriasis, ankylosing spondylitis, etc., it has been challenging to extend the utility of these therapeutics beyond a handful of autoimmune diseases, especially in atopic or rheumatic diseases. This review summarizes the complexities in defining the pathogenicity of the human type-17 pathway and underscores the need for targeting a phenotypically heterogeneous and therapeutically relevant pathogenic cell subset marked by CD161.

Article Details

How to Cite
BANERJEE, Daliya. Unraveling the Challenges in the Retinoid-related Orphan Receptor (ROR)-y(t) Therapeutic Landscape for Autoimmune Diseases. Medical Research Archives, [S.l.], v. 12, n. 4, apr. 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/5306>. Date accessed: 27 may 2024. doi: https://doi.org/10.18103/mra.v12i4.5306.
Research Articles


1. Aguilar-Flores, C., Castro-Escamilla, O., Ortega-Rocha, E. M., Maldonado-Garcia, C., Jurado-Santa Cruz, F., Perez-Montesinos, G., . . . Bonifaz, L. C. (2020). Association of Pathogenic Th17 Cells with the Disease Severity and Its Potential Implication for Biological Treatment Selection in Psoriasis Patients. Mediators Inflamm, 2020, 8065147. Doi:10.1155/2020/8065147
2. Annunziato, F., Cosmi, L., Liotta, F., Maggi, E., & Romagnani, S. (2012). Defining the human T helper 17 cell phenotype. Trends Immunol, 33(10), 505-512. Doi:10.1016/j.it.2012.05.004
3. Annunziato, F., & Romagnani, S. (2009). Do studies in humans better depict Th17 cells? Blood, 114(11), 2213-2219. Doi:10.1182/blood-2009-03-209189
4. Banerjee, D., Zhao, L., Wu, L., Palanichamy, A., Ergun, A., Peng, L., . . . Fontenot, J. D. (2016). Small molecule mediated inhibition of RORgamma-dependent gene expression and autoimmune disease pathology in vivo. Immunology, 147(4), 399-413. Doi:10.1111/imm.12570
5. Basdeo, S. A., Moran, B., Cluxton, D., Canavan, M., McCormick, J., Connolly, M., . . . Fletcher, J. M. (2015). Polyfunctional, Pathogenic CD161+ Th17 Lineage Cells Are Resistant to Regulatory T Cell-Mediated Suppression in the Context of Autoimmunity. J Immunol, 195(2), 528-540. Doi:10.4049/jimmunol.1402990
6. Blom, L. H., Martel, B. C., Larsen, L. F., Hansen, C. V., Christensen, M. P., Juel-Berg, N., . . . Poulsen, L. K. (2017). The immunoglobulin superfamily member CD200R identifies cells involved in type 2 immune responses. Allergy, 72(7), 1081-1090. Doi:10.1111/all.13129
7. Cenit, M. C., Alcina, A., Marquez, A., Mendoza, J. L., Diaz-Rubio, M., de las Heras, V., . . . Urcelay, E. (2010). STAT3 locus in inflammatory bowel disease and multiple sclerosis susceptibility. Genes Immun, 11(3), 264-268. Doi:10.1038/gene.2010.10
8. Ciofani, M., Madar, A., Galan, C., Sellars, M., Mace, K., Pauli, F., . . . Littman, D. R. (2012). A validated regulatory network for Th17 cell specification. Cell, 151(2), 289-303. Doi:10.1016/j.cell.2012.09.016
9. Cornelissen, F., Asmawidjaja, P. S., Mus, A. M., Corneth, O., Kikly, K., & Lubberts, E. (2013). IL-23 dependent and independent stages of experimental arthritis: no clinical effect of therapeutic IL-23p19 inhibition in collagen-induced arthritis. PLoS One, 8(2), e57553. Doi:10.1371/journal.pone.0057553
10. Cosmi, L., De Palma, R., Santarlasci, V., Maggi, L., Capone, M., Frosali, F., . . . Annunziato, F. (2008). Human interleukin 17-producing cells originate from a CD161+CD4+ T cell precursor. J Exp Med, 205(8), 1903-1916. Doi:10.1084/jem.20080397
11. Cosmi, L., Maggi, L., Santarlasci, V., Capone, M., Cardilicchia, E., Frosali, F., . . . Annunziato, F. (2010). Identification of a novel subset of human circulating memory CD4(+) T cells that produce both IL-17A and IL-4. J Allergy Clin Immunol, 125(1), 222-230 e221-224. Doi:10.1016/j.jaci.2009.10.012
12. Cua, D. J., & Tato, C. M. (2010). Innate IL-17-producing cells: the sentinels of the immune system. Nat Rev Immunol, 10(7), 479-489. Doi:10.1038/nri2800
13. Duerr, R. H., Taylor, K. D., Brant, S. R., Rioux, J. D., Silverberg, M. S., Daly, M. J., . . . Cho, J. H. (2006). A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science, 314(5804), 1461-1463. Doi:10.1126/science.1135245
14. Fergusson, J. R., Smith, K. E., Fleming, V. M., Rajoriya, N., Newell, E. W., Simmons, R., . . . Klenerman, P. (2014). CD161 defines a transcriptional and functional phenotype across distinct human T cell lineages. Cell Rep, 9(3), 1075-1088. Doi:10.1016/j.celrep.2014.09.045
15. Gara, S. K., Guntipalli, P., Marzban, S., Taqi, M., Aryal, V., Khan, Q. U. A., . . . Diaz-Miret, M. (2023). Clinical Outcomes of Ustekinumab in Inflammatory Bowel Disease. Cureus, 15(10), e46833. Doi:10.7759/cureus.46833
16. Haggerty, H. G., Sathish, J. G., Gleason, C. R., Al-Haddawi, M., Brodie, T. A., Bonnette, K. L., . . . Graziano, M. J. (2021). Thymic Lymphomas in a 6-Month rasH2-Tg Mouse Carcinogenicity Study With the RORgammat Inverse Agonist, BMS-986251. Toxicol Sci, 183(1), 93-104. Doi:10.1093/toxsci/kfab086
17. Hueber, W., Patel, D. D., Dryja, T., Wright, A. M., Koroleva, I., Bruin, G., Di Padova, F. (2010). Effects of AIN457, a fully human antibody to interleukin-17A, on psoriasis, rheumatoid arthritis, and uveitis. Sci Transl Med, 2(52), 52ra72. Doi:10.1126/scitranslmed.3001107
18. Jaeger, N., Gamini, R., Cella, M., Schettini, J. L., Bugatti, M., Zhao, S., . . . Colonna, M. (2021). Single-cell analyses of Crohn's disease tissues reveal intestinal intraepithelial T cells heterogeneity and altered subset distributions. Nat Commun, 12(1), 1921. Doi:10.1038/s41467-021-22164-6
19. Korn, T., Bettelli, E., Oukka, M., & Kuchroo, V. K. (2009). IL-17 and Th17 Cells. Annu Rev Immunol, 27, 485-517. Doi:10.1146/annurev.immunol.021908.132710
20. Kotake, S., Nanke, Y., Yago, T., Kawamoto, M., Kobashigawa, T., & Yamanaka, H. (2016). Elevated Ratio of Th17 Cell-Derived Th1 Cells (CD161(+)Th1 Cells) to CD161(+)Th17 Cells in Peripheral Blood of Early-Onset Rheumatoid Arthritis Patients. Biomed Res Int, 2016, 4186027. Doi:10.1155/2016/4186027
21. Kragstrup, T. W., Glintborg, B., Svensson, A. L., McMaster, C., Robinson, P. C., Deleuran, B., & Liew, D. F. (2022). Waiting for JAK inhibitor safety data. RMD Open, 8(1). Doi:10.1136/rmdopen-2022-002236
22. Kunwar, S., Dahal, K., & Sharma, S. (2016). Anti-IL-17 therapy in treatment of rheumatoid arthritis: a systematic literature review and meta-analysis of randomized controlled trials. Rheumatol Int, 36(8), 1065-1075. Doi:10.1007/s00296-016-3480-9
23. Leonardi, C. L., Kimball, A. B., Papp, K. A., Yeilding, N., Guzzo, C., Wang, Y., . . . investigators, P. s. (2008). Efficacy and safety of ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with psoriasis: 76-week results from a randomised, double-blind, placebo-controlled trial (PHOENIX 1). Lancet, 371(9625), 1665-1674. Doi:10.1016/S0140-6736(08)60725-4
24. Maggi, L., Santarlasci, V., Capone, M., Peired, A., Frosali, F., Crome, S. Q., . . . Annunziato, F. (2010). CD161 is a marker of all human IL-17-producing T-cell subsets and is induced by RORC. Eur J Immunol, 40(8), 2174-2181. Doi:10.1002/eji.200940257
25. Nair, R. P., Duffin, K. C., Helms, C., Ding, J., Stuart, P. E., Goldgar, D., . . . Collaborative Association Study of, P. (2009). Genome-wide scan reveals association of psoriasis with IL-23 and NF-kappaB pathways. Nat Genet, 41(2), 199-204. Doi:10.1038/ng.311
26. Nistala, K., Adams, S., Cambrook, H., Ursu, S., Olivito, B., de Jager, W., . . . Wedderburn, L. R. (2010). Th17 plasticity in human autoimmune arthritis is driven by the inflammatory environment. Proc Natl Acad Sci U S A, 107(33), 14751-14756. Doi:10.1073/pnas.1003852107
27. Schinocca, C., Rizzo, C., Fasano, S., Grasso, G., La Barbera, L., Ciccia, F., & Guggino, G. (2021). Role of the IL-23/IL-17 Pathway in Rheumatic Diseases: An Overview. Front Immunol, 12, 637829. Doi:10.3389/fimmu.2021.637829
28. Smolen, J. S., Agarwal, S. K., Ilivanova, E., Xu, X. L., Miao, Y., Zhuang, Y., . . . Baker, D. (2017). A randomised phase II study evaluating the efficacy and safety of subcutaneously administered ustekinumab and guselkumab in patients with active rheumatoid arthritis despite treatment with methotrexate. Ann Rheum Dis, 76(5), 831-839. Doi:10.1136/annrheumdis-2016-209831
29. Stahl, E. A., Raychaudhuri, S., Remmers, E. F., Xie, G., Eyre, S., Thomson, B. P., . . . Plenge, R. M. (2010). Genome-wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci. Nat Genet, 42(6), 508-514. Doi:10.1038/ng.582
30. Wambre, E., Bajzik, V., DeLong, J. H., O'Brien, K., Nguyen, Q. A., Speake, C., . . . Kwok, W. W. (2017). A phenotypically and functionally distinct human T(H)2 cell subpopulation is associated with allergic disorders. Sci Transl Med, 9(401). Doi:10.1126/scitranslmed.aam9171
31. Yokoi, T., Murakami, M., Kihara, T., Seno, S., Arase, M., Wing, J. B., . . . Takeda, K. (2023). Identification of a unique subset of tissue-resident memory CD4(+) T cells in Crohn's disease. Proc Natl Acad Sci U S A, 120(1), e2204269120. Doi:10.1073/pnas.2204269120
32. Zeng, J., Li, M., Zhao, Q., Chen, M., Zhao, L., Wei, S., . . . Wu, X. (2023). Small molecule inhibitors of RORgammat for Th17 regulation in inflammatory and autoimmune diseases. J Pharm Anal, 13(6), 545-562. Doi:10.1016/j.jpha.2023.05.009
33. Zhao, J., Chen, Y., Zhao, Q., Shi, J., Yang, W., Zhu, Z., . . . Liu, J. (2018). Increased circulating Tfh17 and PD-1(+)Tfh cells are associated with autoantibodies in Hashimoto's thyroiditis. Autoimmunity, 51(7), 352-359. Doi:10.1080/08916934.2018.1516761
34. Zhao, L., Nocturne, G., Haskett, S., Boudaoud, S., Lazure, T., Le Pajolec, C., . . . Banerjee, D. (2017). Clinical relevance of RORgamma positive and negative subsets of CD161+CD4+ T cells in primary Sjogren's syndrome. Rheumatology (Oxford), 56(2), 303-312. Doi:10.1093/rheumatology/kew360