Photoreception and phototransduction in human skin

Main Article Content

David John Mackay Smith

Abstract

Light allows us to see. Seeing begins with photoreceptors in the retina where light is absorbed, converted into an electrical response and transmitted to the brain. Photoreception is highly conserved, and in animals, almost exclusively based on a single class of proteins, the opsins. Image-forming information goes to the lateral geniculate nucleus and eventual processing into visual images, sight. What may not be immediately apparent is the transmission of non-image information. However, cells in the skin contain the full set of opsins and their phototransduction cascades which are active, cover the whole solar spectrum and appear to participate in the skin’s protective mechanisms. This is obviously related to collection of non-image information. Why is this system of photoreception and transmission duplicated in the skin and what is its function?

Article Details

How to Cite
SMITH, David John Mackay. Photoreception and phototransduction in human skin. Medical Research Archives, [S.l.], v. 12, n. 6, june 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/5366>. Date accessed: 21 jan. 2025. doi: https://doi.org/10.18103/mra.v12i6.5366.
Section
Research Articles

References

1. Cui, R., Wildlund, H., Feige, E., et al. Central role of p53 in the suntan response and pathologic hyperpigmentation. 2007. Cell; 128: 853-864.

2. Passeron, T., Ortonne, J-P. Atlas of pigmentary disorders. 2016.Cham. Switzerland. Springer.

3. Liebel, F., Kaur, S., Ruvolo, E., et al. Irradiation of skin with visible light induces reactive oxygen species and matrix-degrading enzymes. 2012. J Invest. Dermatol; 132: 1901-1907.

4. Mahmoud, B., Ruvolo, E., Hexsel, C., et al. Impact of long wavelength UVA and visible light on melanocytes. 2010. J Invest. Dermatol; 130: 2092-2097.

5. Nelson, R., Zucker, I. Absence of extra-ocular photoreception in diurnal and nocturnal rodents exposed to direct sunlight. 1981. Comp. Biochem. Physiol; 69A: 145-148.

6. Forster, R., Provencio, I., Hudson, D., et al. Circadian photoreception in the retinally degenerate mouse. 1991. J Comp Physiol; 169A:39-50.

7. Dartnall, H. The interpretation of spectral sensitivity curves. 1953. Br. Med. Bull; 9: 24-30.

8. Arendt, D. Evolution of eyes and photoreceptor types. 2003. Int. J Dev. Biol; 47: 563-571.

9. Nasi, E., Gomez, R., Payne. Phototransduction mechanisms in microvillar and photoreceptors in invertebrates. In: Stavenga, D., de Grip, W., Pug, L., editors. Handbook of biological physics. New York. Elsevier 2000; 389-448.

10. Jones, G., Crouch, R., Wiggert, B., et al. Retinoid requirements for recovery of sensitivity after visual pigment bleaching in isolated photoreception. 1989. Proc. Natl. Acad. Sci. USA; 86: 9606-9610.

11. Kefalov, V., Fu, Y., Marsh-Armstrong, N., et al. Role of visual pigment properties in rod and cone phototransduction. 2003. Nature; 425-531.

12. Fu, Y., Liao, H-W., Do, M., et al. Non-image-forming ocular photoreception in vertebrates. 2005. Curr Opin Neurobiol; 15: 415-422.

13. Pankey, S., Sunada, H., Horikoshi,. et al. Cyclic nucleotide-gated channels are involved in phototransduction of dermal photoreceptors in Lymnaea stagnalis. 2010. J Comp. Physiol (B); 180(8):1205-1211.

14. Xiang, Y., Yuan, Q., Vogt, N., et al. Light-avoidance-mediating photoreceptors tile the Drosophila larval body wall. 2010. Nature; 4687326): 921-926.

15. Serrage, H., Heiskanen, V., Palin, W., et al. Under the spotlight: mechanisms of photobiomodulation concentrating on blue and green light. 2019. Photochem. Photobiol. Sci; 18(8): 1877-1909.

16. Young, J. in: The life of vertebrates. 1962. Oxford UK. The Clarendon Press.

17. Lythgoe, J. The ecology of vision. 1979. Oxford UK: Oxford University Press.

18. Meissl, H. Pineal photosensitivity: A comparison with retinal photoreception. 1997. Biol. Cell; 89: 549-554.

19. Su, C., Luo, D., Terakita, A., et al. Parietal-eye phototransduction components and their potential evolutionary implications. 2006. Science; 311: 1617-1621

20. Melyan, Z., Tarttelin, E., Bellingham T, et al. Addition of melanopsin renders mammalian cells photoreceptive. 2005. Nature; 433: 741-745.

21. Barlow, H. Purkinje shift and retinal noise. 1957. Nature; 366: 64-66.

22. Lythgoe, J. Visual pigments and environmental light. 1984. Vision Res; 24: 1539-1550.

23. Goldsmith, T. Optimisation, constraints and history in the evolution of eyes. 1990. Q Rev. Biol; 65: 281-322.

24. Barlow, R., Birger, R., Kaplan, E., et al. On the molecular origin of photoreceptor noise. 1993. Nature; 366: 64-66.

25. Haltaufderhyde, K., Ozdelik, R., Wicks, N., et al. Opsin expression in human epidermal skin. 2015. Photochem. Photobiol; 91(1): 117-123.

26. Yousef, H., Alhajj, M., Sharma, S. Skin (integument), Epidermis. In: StatPearls. 2020. Treasure Island (FL): StatPearls Publishing.

27. Leung, N., Montell, C. Unconventional roles of opsins. 2017. Annu Rev. Cell Dev. Biol; 33(1): 241-264.

28. Kumbalasiri, T., Provencio, I. Melanopsin and other novel mammalian opsins. 2005. Exp. Eye Res; 81(4): 368-375.

29. Mahmoud, B., Hexsel, C., Hamzavi, I., et al. Effects of visible light on the skin. 2008. Photochem. Photobiol; 84: 450-462.

30. Sklar, L., Almutawa, F., Lim, H., et al. Effects of ultraviolet radiation on erythema and pigmentation: a review. 2013. Photochem. Photobiol. Sci;12: 54-64.

31. Moan, J., Nielsen, K., Juzenione, A. Immediate pigment darkening: its evolutionary roles may include protection against folate photosensitisation. 2012. FASEB. J; 26: 971-975.

32. Wicks, N., Chen, J., Najera, J., et al. UVA phototransduction drives early melanin synthesis. 2011. Curr Biol; 21(22): 1906-1911.

33. Bellono, N., Najera, J., Oancea, E. UV light activates a C⍺q/11-coupled phototransduction pathway in human melanocytes. 2014. J Gen. Physiol; 142(2): 203-214.

34. Hardie, R. Phototransduction in Drosophila melanogaster. 2001. J Exp. Biol; 204: 3403-3409.

35. Graham, D., Wong, K., Shapero, P., et al. Melanopsin ganglion cells use a membrane -associated rhabdomeric phototransduction cascade. 2008. J Neurophysiol; 99: 2522-2532.

36. Gunkel, M., Schoneberg, J., Alkhaldi, W., et al. Higher order architecture of rhodopsin in intact photoreceptors and its implication for phototransduction kinetics. 2015. Structure; 23: 628-638.

37. Consortium, G. Human genomics. The genotype-tissue expression (GTEx) pilot analysis: multitissue gene regulation in humans. 2015. Science (N.Y.); 348: 648-660.

38. De Assis, L., Morases, M., Castucci, A., et al. Melanopsin and rhodopsin mediate UVA-induced immediate pigment darkening: Unravelling the photosensory system of the skin. 2018. Euro. J Cell Biol; 97: 150-162.

39. Jablonski, N., Chaplin, H. Human skin pigmentation as an adaption to UV radiation. 2010.Proc. Natl. Acad. Sci. U.S.A.; 107: 8962-8968.

40. Allanson,M., Domanski, D., Reeve, V. Photoimmunoprotection by UVA (320-400nm) radiation is determined by UVA dose and is associated with cutaneous cyclic guanosine monophosphate. 2006. J Invest. Dermaol; 126-197.

41. Holliman, G., Low, D., Cohen, H., et al. Ultraviolet radiation-induced production of nitrous oxide: a multi-cell and multi-dose analysis. 2017. Sci. Rep; 7: 11105.

42. De Assis, M., Moraes, A., Castucci, A. Heat shock antagonises UVA-induced response in murine melanocytes and melanoma cells: an unexpected interaction.2017. Photochem. Photobiol. Sci; 16: 633-648.

43. Duteil, L., Cardot-Leccia, n., Quelle-Roussel, C., et al. Differences in visible light-induced pigmentation according to wavelength: a clinical and histological study in comparison with UVB exposure. 2014. Pig Cell Melanoma Res; 27: 822-826.

44. Boukari, F., Jourdan, E., Fontas, E., et al.Prevention of melasma relapses with sunscreen combining protection against UV and shorter wavelengths of visible light: a prospective randomised comparative trial. 2015. J Am Acad. Dermatol; 72: 189-190.

45. Regazzetti, C., Soman, L., Debayle, D., et al. Melanocytes sense blue light and regulate pigmentation though opsin 3. 2018. J Invest. Dermatol; 138: 171-178.

46. Sugihara, T., Nagata, T., Mason, B., et al. Absorption characteristics of vertebrate non-visual opsin Opn3. 2016. PLoS One; 11(8): e0161215.

47. Koyangi, M., Takada, E., Nagata, T., et al. Homologs of vertebrate Opn3 potentially serve as a light sensor in non-photosensitive tissue. 2013. Proc Natl Acad Sci USA; 110: 4998-5003.

48. Olinski, L., Lin, E., Oancea, E. Illuminating insights into opsin 3 function in the skin. 2020. Adv. Biol. Reg; 100668.doi: j.jbior. 2019. 100668.

49. Wang, Y., Lan, Y., Lu, H. Opsin 3 downregulation induces apoptosis of human epidermal melanocytes via a mitochondrial pathway. 2020. Photochem. Photobiol; 96(1): 83-93.

50. Castellano-Pellicena, I., Uzunbajakava, J., Mignon, C., et al. Blue light restores human epidermal barrier function via activity of opsin during cutaneous wound healing? 2018. Laser Surg Med; 51(4): 370-382.

51. Tofinski, L., Demuir, E., Kauczok, S., et al. Blue light inhibits transforming growth factor-β1-induced myofibroblast differentiation of human dermal fibroblasts. 2014. Exp Dermatol; 23(4): 240-246.

52. Oplander, C., Hidding, S., Werners, F., et al. Effects of blue light irradiation on human dermal fibroblasts. 2011. J Photochem. Photobiol B; 103(2): 118-125.

53. Mignow, C., Bokchkareva, N., Uzunbajakava, N., et al. Photo biomodulation devices for hair regrowth and wound healing: a therapy full of promise but a literature full of confusion. 2016. Ex Dermatol; 25(10): 745-749.

54. Buscone, S., Mardaryev, A., Raafs, B., et al. A new path in defining light parameters for hair growth: Discovery and modulation of photoreceptors in human hair follicles. 2017. Laser Surg. Med; 49(7): 705-718.

55. Sekarans, S., Lupi, D., Jones, S., et al. Melanopsin-dependent photoreception provides earliest light detection in the mammalian retina. 2005. Curr. Biol; 15: 1099-1107.