Redefining Cognitive Domains in the Era of ChatGPT: A Comprehensive Analysis of Artificial Intelligence's Influence and Future Implications
Main Article Content
Abstract
Background and Objectives: Despite its extensive utilization, research on Chat Generative Pre-trained Transformer (ChatGPT)'s potential negative impact on specific cognitive processes is scarce. This article explores the widespread use of ChatGPT in educational, corporate, and various other sectors, focusing on its interaction with distinct cognitive domains such as attention, executive function, language, memory, visuospatial abilities, and social cognition.
Methods: A literature review was conducted using PubMed, identifying 256 articles, with 29 peer-reviewed articles analyzed after screening for relevance.
Results: The review emphasizes the extraordinary capabilities of the human brain, which often go unrecognized, and argues for the importance of maintaining and enhancing natural cognitive abilities using artificial intelligence tools like ChatGPT as an aid rather than a replacement. The findings highlight the advanced reasoning capabilities of ChatGPT, blending intuitive and deliberate cognitive processes.
Conclusion: Building a socio-cognitive architecture for collective human-machine intelligence has significant potential. While ChatGPT offers impressive capabilities, over-reliance on it for cognitive tasks can lead to the erosion of essential skills. It is crucial to find a balance between leveraging artificial intelligence's advantages and preserving our natural cognitive abilities, ensuring continuous practice and engagement in traditional cognitive exercises.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Sachdev PS, Blacker D, Blazer DG, Ganguli M, Jeste DV, Paulsen JS, et al. Classifying neurocognitive disorders: the DSM-5 approach. Nat Rev Neurol. 2014 Nov;10(11):634-42. Doi: 10.1038/nrneurol.2014.181. Epub 2014 Sep 30. PMID: 25266297.
3. Beaudoin C, Beauchamp MH. Social cognition. Handb Clin Neurol. 2020;173:255-264. Doi: 10.1016/B978-0-444-64150-2.00022-8. PMID: 32958179.
4. Leblanc H, Ramirez S. Linking Social Cognition to Learning and Memory. J Neurosci. 2020 Nov 11;40(46):8782-8798. Doi: 10.1523/JNEUROSCI.1280-20.2020. PMID: 33177112; PMCID: PMC7659449.
5. Kärtner J, Schuhmacher N, Giner Torréns M. Culture and early social-cognitive development. Prog Brain Res. 2020;254:225-246. Doi: 10.1016/bs.pbr.2020.06.011. Epub 2020 Jul 16. PMID: 32859289.
6. Dowd AJ, Friedlander E, Jonason C, Leer J, Sorensen LZ, Guajardo J, et al. Lifewide Learning for Early Reading Development. New Dir Child Adolesc Dev. 2017 Mar;2017(155):31-49. Doi: 10.1002/cad.20193. PMID: 28267289.
7. Freiman M. A 'cognitive turn' in creative writing–Cognition, body and imagination. New Writing. 2015;12(2):127-142.
8. Devereux K. Embracing Uncertainty: How literary writing helps us change our minds. Front Psychol. 2022 Oct 11;13:1019987. Doi: 10.3389/fpsyg.2022.1019987. PMID: 36304853; PMCID: PMC9595112.
9. O'Sullivan N, Davis P, Billington J, Gonzalez-Diaz V, Corcoran R. "Shall I compare thee": The neural basis of literary awareness, and its benefits to cognition. Cortex. 2015 Dec;73:144-57. Doi: 10.1016/j.cortex.2015.08.014. Epub 2015 Aug 28. PMID: 26409018.
10. Gordijn B, Have HT. ChatGPT: evolution or revolution? Med Health Care Philos. 2023 Mar;26(1):1-2. Doi: 10.1007/s11019-023-10136-0. PMID: 36656495.
11. The Lancet Digital Health. ChatGPT: friend or foe? Lancet Digit Health. 2023 Mar;5(3):e102. Doi: 10.1016/S2589-7500(23)00023-7. Epub 2023 Feb 6. PMID: 36754723.
12. van Dis EAM, Bollen J, Zuidema W, van Rooij R, Bockting CL. ChatGPT: five priorities for research. Nature. 2023 Feb;614(7947):224-226. Doi: 10.1038/d41586-023-00288-7. PMID: 36737653.
13. León-Domínguez U. Potential cognitive risks of generative transformer-based AI chatbots on higher order executive functions. Neuropsychology. 2024 May;38(4):293-308. Doi: 10.1037/neu0000948. Epub 2024 Feb 1. PMID: 38300581.
14. Hagendorff T, Fabi S, Kosinski M. Human-like intuitive behavior and reasoning biases emerged in large language models but disappeared in ChatGPT. Nat Comput Sci. 2023 Oct;3(10):833-838. Doi: 10.1038/s43588-023-00527-x. Epub 2023 Oct 5. PMID: 38177754; PMCID: PMC10766525.
15. Breithaupt F, Otenen E, Wright DR, Kruschke JK, Li Y, Tan Y. Humans create more novelty than ChatGPT when asked to retell a story. Sci Rep. 2024 Jan 9;14(1):875. Doi: 10.1038/s41598-023-50229-7. PMID: 38195660; PMCID: PMC10776760.
16. Marchetti A, Di Dio C, Cangelosi A, Manzi F, Massaro D. Developing ChatGPT's Theory of Mind. Front Robot AI. 2023 May 30;10:1189525. Doi: 10.3389/frobt.2023.1189525. PMID: 37377631; PMCID: PMC10292745.
17. Strachan JWA, Albergo D, Borghini G, Pansardi O, Scaliti E, Gupta S, Saxena K, Rufo A, Panzeri S, Manzi G, Graziano MSA, Becchio C. Testing theory of mind in large language models and humans. Nat Hum Behav. 2024 May 20. Doi: 10.1038/s41562-024-01882-z. Epub ahead of print. PMID: 38769463.
18. Gonzalez C, Admoni H, Brown S, Woolley AW. COHUMAIN: Building the Socio-Cognitive Architecture of Collective Human-Machine Intelligence. Top Cogn Sci. 2023 Jun 18. Doi: 10.1111/tops.12673. Epub ahead of print. PMID: 37331024.