Impact of Ultra-widefield Imaging on Understanding the Pathophysiology of Peripheral Retinal Degeneration

Main Article Content

Kristen Brown, OD, FAAO Dana Keane, MS Lauren Turner, MS Tunde Peto, MD

Abstract

Ultra-widefield imaging has revolutionized the understanding of the retinal periphery in clinical practice. Since the publication of the study “Comparison of image-assisted versus traditional fundus examination,” the practice of using fundus imaging to guide retinal examination has become ubiquitous, not only by experienced doctors in practice, but in the training of new clinicians.1 Quick capture and review of micron-level views with various wavelengths allows clinicians to plan their fundus exam, focus their time on areas of suspicion and better understand the health of the entire retina more effectively and efficiently. Image-assisted ophthalmoscopy has excellent agreement for a variety of lesion types but confers an advantage in optic nerve assessment, review of small lesions in the mid and far periphery and in visualization of vitreous lesions. Increasing resolution, integration of new wavelengths, auto-montage, optical coherence tomography and artificial intelligence have improved the sensitivity of this tool - thus improving the overall efficiency of a fundus exam, improving outcomes and leading to more accurate assessment of risk. Advances in ultra-widefield imaging technology have allowed us to better understand the anatomy and physiology of the peripheral retina and its relation to sight threatening disease; making this an invaluable tool to educate our students in training as well as our patients with and without retinal pathology in the clinic. When an image or lesion of concern can be viewed simultaneously by student and instructor or by doctor and patient, the learning and understanding from this ultra-widefield perspective are invaluable. In this review, we explore the technological advances and the impact on detection, diagnosis and prognostic potential in a variety of retinal degenerations. In addition, we examine remaining challenges of the technology.

Article Details

How to Cite
BROWN, Kristen et al. Impact of Ultra-widefield Imaging on Understanding the Pathophysiology of Peripheral Retinal Degeneration. Medical Research Archives, [S.l.], v. 12, n. 8, aug. 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/5507>. Date accessed: 07 jan. 2025. doi: https://doi.org/10.18103/mra.v12i8.5507.
Section
Research Articles

References

1. Brown K, Sewell JM, Trempe C, Peto T, Travison TG. Comparison of image-assisted versus traditional fundus examination. Eye Brain. 2013;5:1-8. doi:10.2147/EB.S37646
2. Friberg TR, Pandya A, Eller AW. Non-mydriatic panoramic fundus imaging using a non-contact scanning laser-based system. Ophthalmic Surg Lasers Imaging. 2003;34(6):488-497.
3. Sherman J, Karamchandani G, Jones W, Nath S. Panoramic Ophthalmoscopy: Optomap Images and Interpretation. First Edition. SLACK 2007.
4. Choudhry N, Duker JS, Freund KB, et al. Classification and Guidelines for Widefield Imaging: Recommendations from the International Widefield Imaging Study Group. Ophthalmol Retina. 2019;3(10):843-849. doi:10.1016/j.oret.2019.05.007.
5. Lyu J, Zhang Q, Wang SY, Chen YY, Xu Y, Zhao PQ. Ultra-wide-field scanning laser ophthalmoscopy assists in the clinical detection and evaluation of asymptomatic early-stage familial exudative vitreoretinopathy. Graefes Arch Clin Exp Ophthalmol. 2017;255(1):39-47. doi:10.1007/s00417-016-3415-x.
6. Chen WS, Friberg, TR, Eller AW, Medina, C; Advances in retinal imaging of eyes with hazy media: Further studies. Invest. Ophthalmol Vis. Sci. 2011;52(14):4036.
7. Nakao S, Arita R, Sato Y, et al. Wide-field laser ophthalmoscopy for imaging of gas-filled eyes after macular hole surgery. Clin Ophthalmol. 2016;10:1623-1630. doi:10.2147/OPTH.S109900.
8. Boral SK, Agarwal D, Das A, Chakraborty D. Complete manuscript title: role of sub-silicone oil application of triamcinolone acetonide (TA) drops on outcomes after 360° relaxing retinectomy: a pilot study. Int Ophthalmol. 2023;43(6):1867-1876. doi:10.1007/s10792-022-02586-x.
9. Sayegh RR, Dohlman CH. Wide-angle fundus imaging through the Boston keratoprosthesis. Retina. 2013;33(6):1188-1192. doi:10.1097/IAE.0b013e3182869ec2.
10. Kornberg DL, Yannuzzi NA, Klufas MA, DʼAmico DJ, Orlin A, Kiss S. Ultra-widefield Imaging of Posterior Segment Pathology in the Setting of the Boston Keratoprosthesis. Retina. 2016;36(6):1101-1110. doi:10.1097/IAE.0000000000000833.
11. Yokota R, Koto T, Inoue M, Hirakata A. Ultra-wide-field retinal images in an eye with a small-aperture corneal inlay. J Cataract Refract Surg. 2015;41(1):234-236. doi:10.1016/j.jcrs.2014.10.024.
12. Silva PS, Horton MB, Clary D, et al. Identification of Diabetic Retinopathy and Ungradable Image Rate with Ultrawide Field Imaging in a National Teleophthalmology Program. Ophthalmology. 2016;123(6):1360-1367. doi:10.1016/j.ophtha.2016.01.043.
13. Sodhi SK, Golding J, Trimboli C, Choudhry N. Feasibility of peripheral OCT imaging using a novel integrated SLO ultra-widefield imaging swept-source OCT device. Int Ophthalmol. 2021;41(8):2805-2815. doi:10.1007/s10792-021-01837-7.
14. Aiello LP, Jacoba CMP, Ashraf M, et al. Integrating Macular Optical Coherence Tomography with Ultrawide-field Imaging in a Diabetic Retinopathy Telemedicine Program Using a Single Device. Retina. 2023;43(11):1928-1935. doi:10.1097/IAE.0000000000003883.
15. Grading diabetic retinopathy from stereoscopic color fundus photographs--an extension of the modified Airlie House classification. ETDRS report number 10. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology. 1991;98(5 Suppl):786-806.
16. Silva PS, Cavallerano JD, Sun JK, Noble J, Aiello LM, Aiello LP. Non-mydriatic ultrawide field retinal imaging compared with dilated standard 7-field 35-mm photography and retinal specialist examination for evaluation of diabetic retinopathy. Am J Ophthalmol. 2012;154(3):549-559.e2. doi:10.1016/j.ajo.2012.03.019.
17. Aiello LP, Odia I, Glassman AR, et al. Comparison of Early Treatment Diabetic Retinopathy Study Standard 7-Field Imaging With Ultrawide-Field Imaging for Determining Severity of Diabetic Retinopathy. JAMA Ophthalmol. 2019;137(1):65-73. doi:10.1001/jamaophthalmol.2018.4982.
18. Lois N, Cook JA, Wang A, et al. Evaluation of a New Model of Care for People with Complications of Diabetic Retinopathy: The EMERALD Study [published correction appears in Ophthalmology. 2021 Jul;128(7):1117. doi: 10.1016/j.ophtha.2021.04.013]. Ophthalmology. 2021;128(4):561-573. doi:10.1016/j.ophtha.2020.10.030.
19. Maredza M, Mistry H, Lois N, Aldington S, Waugh N; EMERALD Study Group. Surveillance of people with previously successfully treated diabetic macular oedema and proliferative diabetic retinopathy by trained ophthalmic graders: cost analysis from the EMERALD study. Br J Ophthalmol. 2022;106(11):1549-1554. doi:10.1136/bjophthalmol-2021-318816.
20. Lengyel I, Csutak A, Florea D, et al. A Population-Based Ultra-Widefield Digital Image Grading Study for Age-Related Macular Degeneration-Like Lesions at the Peripheral Retina. Ophthalmology. 2015;122(7):1340-1347. doi:10.1016/j.ophtha.2015.03.005.
21. Writing Committee for the OPTOS PEripheral RetinA (OPERA) study (Ancillary Study of Age-Related Eye Disease Study 2), Domalpally A, Clemons TE, et al. Peripheral Retinal Changes Associated with Age-Related Macular Degeneration in the Age-Related Eye Disease Study 2: Age-Related Eye Disease Study 2 Report Number 12 by the Age-Related Eye Disease Study 2 Optos PEripheral RetinA (OPERA) Study Research Group. Ophthalmology. 2017;124(4):479-487. doi:10.1016/j.ophtha.2016.12.004
22. Friberg TR, Bilonick RA, Brennen PM. Analysis of the relationship between drusen size and drusen area in eyes with age-related macular degeneration. Ophthalmic Surg Lasers Imaging. 2011;42(5):369-375. doi:10.3928/15428877-20110812-01.
23. Quinn NB, Azuara-Blanco A, Graham K, Hogg RE, Young IS, Kee F. Can ultra-wide field retinal imaging replace colour digital stereoscopy for glaucoma detection? Ophthalmic Epidemiol. 2018;25(1):63-69. doi:10.1080/09286586.2017.1351998.
24. Haleem MS, Han L, Hemert Jv, et al. Regional Image Features Model for Automatic Classification between Normal and Glaucoma in Fundus and Scanning Laser Ophthalmoscopy (SLO) Images. J Med Syst. 2016;40(6):132.doi:10.1007/s10916-016-0482-9.
25. Stanga PE, Bravo FJV, Reinstein UI, Stanga SFE. New 200° Single-Capture Color Red-Green-Blue Ultra-Widefield Retinal Imaging Technology: First Clinical Experience. Ophthalmic Surg Lasers Imaging Retina. 2023;54(12):714-718. doi:10.3928/23258160-20231019-03.
26. Sagong M, van Hemert J, Olmos de Koo LC, Barnett C, Sadda SR. Assessment of accuracyand precision of quantification of ultra-widefield images. Ophthalmology. 2015;122(4):864-866. doi:10.1016/j.ophtha.2014.11.016.
27. Chaglasian M , Sinai M, Salazar P, Speilburg A, Rozwat A, Turner L. Accuracy of Glaucoma Detection with a Novel Imaging Device: Combined UWF-SLO and SD-OCT. ARVO. 2024.
28. Sinai E, Salazar P, Speilburg A, Rozwat A, Chaglasian M, Sinai M. Structure and Function Relationship in Glaucoma with a Novel Multi-Modal Imaging Device Combining UWF-SLO and SD-OCT. ARVO. 2024.
29. Kusumi Y, Sano M, Nakayama M, Koto T, Inoue M, Yamamoto M, Hirakata A. Efficacy of Ultra-wide Angle Fundus Imaging without Dilated Pupils in Annual Health Check-up Examination. Nippon Ganka Gakkai Zasshi. 2016; 120(1):35-40.
30. Fogliato G, Borrelli E, Iuliano L, et al. Comparison Between Ultra-Widefield Pseudocolor Imaging and Indirect Ophthalmoscopy in the Detection of Peripheral Retinal Lesions. Ophthalmic Surg Lasers Imaging Retina. 2019;50(9):544-549. doi:10.3928/23258160-20190905-02.
31. Li M, Yang D, Shen Y, et al. Application of mydriasis and eye steering in ultrawide field imaging for detecting peripheral retinal lesions in myopic patients. Br J Ophthalmol. 2023;107(7):1018-1024. doi:10.1136/bjophthalmol-2021-319809.
32. Ulfik-Dembska K, Teper S, Dembski M, Nowińska A, Wylęgała E. Peripheral Retinal Degenerations and Idiopathic Epiretinal Membrane: Analysis with Ultra-Wide-Field Scanning Laser Ophthalmoscopy. J Clin Med. 2021;10(17):3876. doi:10.3390/jcm10173876.
33. Kovacs KD, Mahrous MA, Gonzalez L, et al. Feasibility and Clinical Utility of Ultra-Widefield-Navigated Swept-Source Optical Coherence Tomography Imaging. J Vitreoretin Dis. 2021;5(5):396-404. doi:10.1177/2474126421997335.