Biosensors application for SARS-CoV-2 detection

Main Article Content

Maha Farhat Aljowhara H. Alsaeed Manar A. Bahammam Nof T. Alzayyat Salma S. Alkattan Sara G. Alidan

Abstract

In the light of the rapid diffusion of the coronavirus in the last four years and Vue the hinge of a proper management and prognosis of future possible outbreaks, this systematic review tackled several recent studies on SARS-CoV-2 detection approaches using nanotechnology-based biosensor devices as a successful tool in the early-stage detection of the Coronavirus. 


Notably, various biomarkers have shown significant applications of Electrochemical, field effect transistor, surface plasmonic resonance and piezoelectric based biosensors in the SARS-CoV-2 pandemic. These devices are showing instant rapid results (10 seconds), low detection limits (0.22 pM) and high sensitivity for early and effective diagnosis of coronavirus.  


The urgent need for early viral detection methods, vital for controlling infection, guiding therapy, and advancing vaccine studies have stressed the importance of biosensors in this field. More research is nevertheless required to streamline the production of these devices, making them more affordable and user-friendly.

Keywords: SARS-CoV-2, EC, FET, SPR, Piezoelectric biosensors

Article Details

How to Cite
FARHAT, Maha et al. Biosensors application for SARS-CoV-2 detection. Medical Research Archives, [S.l.], v. 12, n. 8, aug. 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/5603>. Date accessed: 07 jan. 2025. doi: https://doi.org/10.18103/mra.v12i8.5603.
Section
Research Articles

References

1. van Doremalen N, Bushmaker T, Morris DH et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N Engl J Med. 2020;382:1564–1567. https://doi.org/10.1056/NEJMc2004973.

2. Geng Y & Wang Y. Stability and transmissibility of SARS-CoV-2 in the environment. In Journal of Medical Virology (Vol. 95, Issue 1). John Wiley and Sons Inc. 2023. https://doi.org/10.1002/jmv.28103

3. Jia M, Taylor TM, Senger SM, et al. SARS-CoV-2 Remains Infectious on Refrigerated Deli Food, Meats, and Fresh Produce for up to 21 Days. Foods. 2022;11(3). https://doi.org/10.3390/foods11030286

4. Lin Y-C, Malott RJ, Ward L, et al. Detection and quantification of infectious severe acute respiratory coronavirus-2 in diverse clinical and environmental samples. Scientific Reports. 2022; 12(1):5418. https://doi.org/10.1038/s41598-022-09218-5

5. Pan X, Chen D, Xia Y, et al. Asymptomatic cases in a family cluster with SARS-CoV-2 infection. Lancet Infect Dis. 2020;20:410–1. https://doi: 10.1016/S1473-3099(20)30114-6.

6. Su L, Jia W, Hou C et al. Microbial biosensors: A review. Biosens Bioelectron. 2011;26(5):1788–99. https://doi.org/10.1016/j.bios.2010.09.005.

7. Asif M, Ajmal M, Ashraf G, et al. The role of biosensors in coronavirus disease-2019 outbreak. Curr Opin Electrochemistry. 2020;23:174–84. https://doi: 10.1016/j.coelec.2020.08.011.

8. Samson R, Navale GR, Dharne MS. Biosensors: frontiers in rapid detection of COVID-19. 3 Biotech. 2020;10:385. https://doi.org/10.1007/s13205-020-02369-0.

9. Suleman S, Shukla SK, Malhotra N. Point of care detection of COVID-19: Advancement in biosensing and diagnostic methods. J Chem Eng. 2021;414:128759. https://doi.org/10.1016/j.cej.2021.128759

10. Yang J, Phan VM, Heo CK, et al. Development of nucleocapsid-specific monoclonal antibodies for SARS-CoV-2 and their ELISA diagnostics on an automatic microfluidic device. Sens Actuators B: Chem. 2023:380.
https://doi.org/10.1016/j.snb.2023.133331

11. Sadighbayan D, Sadighbayan K, Tohid-kia MR, et al. Development of electrochemical biosensors for tumor marker determination towards cancer diagnosis: Recent progress. TrAC Trends Anal Chem. 2019;118:73–88.
https://doi.org/10.1016/j.trac.2019.05.014.

12. Bhalla N, Pan Y, Yang Z, et al. Opportunities and Challenges for Biosensors and Nanoscale Analytical Tools for Pandemics: COVID-19. ACS Nano. 2020. https://doi.org/10.1021/acsnano.0c04421.

13. Abid SA, Suhail A, Al-Kadmy IMS, et al. Biosensors as a future diagnostic approach for COVID-19. Life Sci. 2021. https://doi.org/10.1016/j.lfs.2021.119117.

14. Bahl S, Javaid M, Bagha A, et al. Biosensors applications in fighting COVID-19 pandemic. Apollo Medicine. 2020;17:221–3. https://doi.org/10.4103/am.am_56_20.

15. Djaileb A, Charron B, Jodaylami M, et al. A Rapid and Quantitative Serum Test for SARS-CoV-2 Antibodies with Portable Surface Plasmon Resonance Sensing. ChemRxiv. 2020. https://doi.org/10.26434/chemrxiv.12118914.

16. Giménez-Gómez P, Gutiérrez-Capitán M, Capdevila F, et al. Monitoring of malolactic fermentation in wine using an electrochemical bienzymatic biosensor for l-lactate with long term stability. Anal Chim Acta. 2016;905:126–133. https://doi.org/10.1016/j.aca.2015.11.032.

17. Guo L, Li Z, Chen H, et al. Colorimetric biosensor for the assay of paraoxon in environmental water samples based on the iodine-starch color reaction. Anal Chim Acta. 2017;967:59–63. https://doi.org/10.1016/j.aca.2017.02.028.

18. Justino CIL, Freitas AC, Pereira R, et al. Recent developments in recognition elements for chemical sensors and biosensors. TrAC Trends Anal Chem. 2015;68:2–17. https://doi.org/10.1016/j.trac.2015.03.006.

19. Life Signals to Roll Out Biosensor Patch for COVID 19 Monitoring. NS Med Devices; 2020. Available from:
https://www.nsmedicaldevices.com/news/lifesignalsbiosensorpatchcovid19/. [Last accessed on 2024 Jan 3]

20. Liu Y, Qin Z, Zhou J, et al. Nano-biosensor for SARS-CoV-2/COVID-19 detection: methods, mechanism and interface design. RSC Advances. 2023;13(26):17883–17906. https://doi.org/10.1039/D3RA02560H

21. Mahari S, Roberts A, Shahdeo D, et al. eCovSens-Ultrasensitive Novel In-House Built Printed Circuit Board Based Electrochemical Device for Rapid Detection of nCovid-19 antigen, a spike protein domain 1 of SARS-CoV-2. BioRxiv. 2020. https://doi.org/10.1101/2020.04.24.059204.

22. Qiu G, Gai Z, Tao Y. Dual-Functional Plasmonic Photothermal Biosensors for Highly Accurate Severe Acute Respiratory Syndrome Coronavirus 2 Detection. ACS Nano. 2020;14: 5268–5277. https://doi.org/10.1021/acsnano.0c02439.

23. Seo G, Lee G, Kim MJ et al. Rapid Detection of COVID-19 Causative Virus (SARS-CoV-2) in Human Nasopharyngeal Swab Specimens Using Field-Effect Transistor-Based Biosensor. ACS Nano. 2020;14:5135–5142.
https://doi.org/10.1021/acsnano.0c02823.

24. Antiochia R (2021) Developments in biosensors for CoV detection and future trends. Biosens and Bioelectron 173:112777. https://doi.org/10.1016/j.bios.2020.112777.

25. Ishikawa FN, Chang H-K, Curreli M, et al. Label-Free, Electrical Detection of the SARS Virus N-Protein with Nanowire Biosensors Utilizing Antibody Mimics as Capture Probes. ACS Nano. 2009;3:1219–1224. https://doi.org/10.1021/nn900086c.

26. Layqah LA, & Eissa S. An electrochemical immunosensor for the corona virus associated with the Middle East respiratory syndrome using an array of gold nanoparticle-modified carbon electrodes. Microchim Acta. 2019;186:224. https://doi.org/10.1007/s00604-019-3345-5.

27. Nasseri B, Soleimani N, Rabiee N, et al. Point-of-care microfluidic devices for pathogen detection. Biosens Bioelectron. 2018;117:112–128. https://doi.org/10.1016/j.bios.2018.05.050.

28. Park TJ, Hyun MS, Lee HJ, et al. A self-assembled fusion protein-based surface plasmon resonance biosensor for rapid diagnosis of severe acute respiratory syndrome. Talanta. 2009;79:295–301. https://doi.org/10.1016/j.talanta.2009.03.051.

29. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395: 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5.

30. Pohanka M. Progress in Biosensors for the Point-of-Care Diagnosis of COVID-19. Sens. 2022;22(19):7423. https://doi.org/10.3390/s22197423

31. Qu J-H, Leirs K, Maes W, et al. Innovative FO-SPR Label-free Strategy for Detecting Anti-RBD Antibodies in COVID-19 Patient Serum and Whole Blood. ACS Sensors. 2022;7(2): 477–487.
https://doi.org/10.1021/acssensors.1c02215

32. Samavati A, Samavati Z, Velashjerdi M, et al. Sustainable and fast saliva-based COVID-19 virus diagnosis kit using a novel GO-decorated Au/FBG sensor. J Chem Eng. 2021;420:127655. https://doi.org/10.1016/j.cej.2020.127655

33. Zuo B, Li S, Guo Z, et al. Piezoelectric immunosensor for SARS-associated coronavirus in sputum. Anal Chem. 2004;76:3536–3540. https://doi.org/10.1021/ac035367b.

34. Mandal D, Indaleeb MM, Younan A, et al. Piezoelectric point-of-care biosensor for the detection of SARS-COV-2 (COVID-19) antibodies. Sens Bio-Sens Res. 2022;37:100510. https://doi.org/10.1016/j.sbsr.2022.100510

35. Abdullah Rasheed A, Younis A, Khan MA. Wearable Piezoelectric BioMEMS-based Sensor for SARS-CoV-2 (COVID-19) Virus Droplets Detection. 2021 IEEE 15th International Conference on Nano Molecular Medicine & Engineering (NANOMED). 2021;34–37. https://doi.org/10.1109/NANOMED54179.2021.9766767

36. Chen P, Chung MT, McHugh W, et al. Multiplex Serum Cytokine Immunoassay Using Nanoplasmonic Biosensor Microarrays. ACS Nano. 2015;9:4173–4181. https://doi.org/10.1021/acsnano.5b00396.

37. Russell SM, Alba-Patiño A, Barón E, et al. Biosensors for Managing the COVID-19 Cytokine Storm: Challenges Ahead. ACS Sens. 2020;5: 1506–1513. https://doi.org/10.1021/acssensors.0c00979.