Progression of Neuroimaging Features Associated with Dyskeratosis Congenita and Short Telomere Syndrome: A Case Report

Main Article Content

Devina Espinoza Daniel Thomas Ginat, MD

Abstract

Background: Dyskeratosis congenita is a rare genetic disorder resulting from mutations that lead to shortened telomeres and premature cellular aging. Although it classically presents with a triad of mucocutaneous abnormalities, it has diverse clinical manifestations, affecting multiple organ systems. Neurological involvement, often seen in severe variants, constitutes a significant element of the disease’s pathophysiology, highlighting the vast array of observed complications.


Case Presentation: A 5-year-old girl with a known diagnosis of dyskeratosis congenita due to a WRAP53 mutation presents with bloody stools and epilepsy. Her clinical course was marked by gastrointestinal disturbances, hematologic sequelae, and severe hepatic manifestations, including recurrent bleeding episodes.


Discussion: This case highlights the complex interplay between telomere dysfunction and the systemic and neurological manifestations in dyskeratosis congenita. The serial brain MRI findings reveal progressive white matter disease, brain volume loss, and choroid plexus calcifications, indicating a rapid neurodegenerative progression and premature aging. Enhanced surveillance and tailored management strategies are crucial to mitigate disease-associated morbidity.


Conclusion: Dyskeratosis congenita due to a WRAP53 mutation enriches our understanding of its neurodegenerative dimensions and emphasizes the pivotal role of telomeres in systemic and neurological health. Integrating advanced imaging with comprehensive multidisciplinary management improves disease monitoring and optimizes patient care.

Keywords: Dyskeratosis congenita, Short telomere syndrome, Neuroimaging, Telomere dysfunction, WRAP53 mutation, White matter disease, Neurodegeneration

Article Details

How to Cite
ESPINOZA, Devina; GINAT, Daniel Thomas. Progression of Neuroimaging Features Associated with Dyskeratosis Congenita and Short Telomere Syndrome: A Case Report. Medical Research Archives, [S.l.], v. 12, n. 8, aug. 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/5609>. Date accessed: 07 jan. 2025. doi: https://doi.org/10.18103/mra.v12i8.5609.
Section
Case Reports

References

1. Khattab S, Nasser H, Al-Janabi MH, Hasan F. Dyskeratosis congenita: a rare case report. Oxford Medical Case Reports. 2024;2024(5). doi:10.1093/omcr/omae049

2. Zinsser F. Atrophia cutis reticularis cum pigmentione, dystrophia unguium et leukokeratosis oris Ikonogr Dermatol. 1906;5:219–23

3. Chalkoo Ah, Kaul V, Wani La. Zinsser-Cole-Engmann syndrome: A rare case report with literature review. Journal of Clinical and Experimental Dentistry. Published online 2014:e303-6. doi:10.4317/jced.51274

4. Blackburn EH. Switching and Signaling at the Telomere. Cell. 2001;106(6):661-673. doi:10.1016/s0092-8674(01)00492-5

5. Savage SA, Alter BP. Dyskeratosis Congenita. Hematology/Oncology Clinics of North America. 2009;23(2):215-231. doi:10.1016/j.hoc.2009.01.003

6. Armanios M, Blackburn EH. The telomere syndromes. Nature Reviews Genetics. 2012; 13(10):693-704. doi:10.1038/nrg3246

7. Gadelha RB, Machado CB, Pessoa FMC de P, et al. The Role of WRAP53 in Cell Homeostasis and Carcinogenesis Onset. Current Issues in Molecular Biology. 2022;44(11):5498-5515. doi:10.3390/cimb44110372

8. Nelson ND, Bertuch AA. Dyskeratosis congenita as a disorder of telomere maintenance. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2012;730(1-2):43-51. doi:10.1016/j.mrfmmm.2011.06.008

9. Mason PJ, Bessler M. The genetics of dyskeratosis congenita. Cancer Genetics. 2011;204(12):635-645. doi:10.1016/j.cancergen.2011.11.002

10. Walne AJ, Dokal I. Advances in the understanding of dyskeratosis congenita. British Journal of Haematology. 2009;145(2):164-172. doi:10.1111/j.1365-2141.2009.07598.x

11. Dokal I. Dyskeratosis congenita in all its forms. British Journal of Haematology. 2000;110(4):768-779. doi:10.1046/j.1365-2141.2000.02109.x

12. Zhang M, Cao Y, Wu H, Li H. Brain imaging features of children with Hoyeraal‐Hreidarsson syndrome. Brain and Behavior. 2021;11(5). doi:10.1002/brb3.2079

13. Feldstein J, Fernandez Garcia S. The diagnosis and treatment of dyskeratosis congenita: a review. Journal of Blood Medicine. Published online August 2014:157. doi:10.2147/jbm.s47437

14. Bhala S, Best AF, Giri N, et al. CNS manifestations in patients with telomere biology disorders. Neurology Genetics. 2019;5(6). doi:10.1212/nxg.0000000000000370

15. Glousker G, Touzot F, Revy P, Tzfati Y, Savage SA. Unraveling the pathogenesis of Hoyeraal–Hreidarsson syndrome, a complex telomere biology disorder. British Journal of Haematology. 2015;170(4):457-471. doi:10.1111/bjh.13442

16. Bakar Ö, Işik U, Canpolat C, Alanay Y. Hoyeraal–Hreidarsson Syndrome: An Extremely Rare Dyskeratosis Congenita Phenotype. Pediatric Dermatology. 2015;32(6). doi:10.1111/pde.12693

17. Liu H, Yang Y, Xia Y, et al. Aging of cerebral white matter. Ageing Research Reviews. 2017; 34:64-76. doi:10.1016/j.arr.2016.11.006

18. Xiong YY, Mok V. Age-Related White Matter Changes. Journal of Aging Research. 2011;2011:1-13. doi:10.4061/2011/617927

19. Fujita S, Mori S, Onda K, et al. Characterization of Brain Volume Changes in Aging Individuals With Normal Cognition Using Serial Magnetic Resonance Imaging. JAMA Network Open. 2023;6(6):e2318153. doi:10.1001/jamanetworkopen.2023.18153

20. Bergstrand S, Böhm S, Malmgren H, et al. Biallelic mutations in WRAP53 result in dysfunctional telomeres, Cajal bodies and DNA repair, thereby causing Hoyeraal–Hreidarsson syndrome. Cell Death &; Disease. 2020;11(4). doi:10.1038/s41419-020-2421-4

21. Venteicher AS, Abreu EB, Meng Z, et al. A Human Telomerase Holoenzyme Protein Required for Cajal Body Localization and Telomere Synthesis. Science. 2009;323(5914):644-648. doi:10.1126/science.1165357

22. Mahmoudi S, Henriksson S, Weibrecht I, et al. WRAP53 Is Essential for Cajal Body Formation and for Targeting the Survival of Motor Neuron Complex to Cajal Bodies. PLoS Biology. 2010;8(11):e1000521. doi:10.1371/journal.pbio.1000521

23. Tycowski KT, Shu MD, Kukoyi A, Steitz JA. A Conserved WD40 Protein Binds the Cajal Body Localization Signal of scaRNP Particles. Molecular Cell. 2009;34(1):47-57. doi:10.1016/j.molcel.2009.02.020

24. Vulliamy T, Beswick R, Kirwan M, et al. Mutations in the telomerase component NHP2 cause the premature ageing syndrome dyskeratosis congenita. Proceedings of the National Academy of Sciences. 2008;105(23):8073-8078. doi:10.1073/pnas.0800042105

25. Brailovski E, Tsui H, Chen YB, Velsher L, Liu J, Buckstein R. Previously unreported WRAP53 gene variants in a patient with dyskeratosis congenita. Annals of Hematology. 2021;101(4):907-909. doi:10.1007/s00277-021-04678-7