What do you get? Transmission of pneumococcal pneumonia.

Main Article Content

Tom Boom Anna Budinská Júlia Šeligová Ger T. Rijkers

Abstract

Streptococcus pneumoniae is a polysaccharide encapsulated bacterium responsible for the majority of cases of community acquired pneumonia. The upper respiratory tract of children becomes colonized with pneumococci early in life, from the first weeks of life up to 18 months. Factors which influence timing of colonization include geographical localization, socio-economic circumstances, and household conditions.


Pneumococcal pneumonia to a degree is a seasonal disease, peaking in the winter months. One of the epidemiological determinants is that viral infections (in particular influenza) predispose for pneumococcal pneumonia. The infectious nature of pneumococcal pneumonia was underscored during the COVID-19 pandemic. Due to societal restrictions imposed (face masks, social distancing) the incidence of invasive pneumococcal disease (IPD) dropped, and returned to pre-COVID-19 numbers after lifting of the restrictions.


There are 100 different S. pneumoniae serotypes, based on differences in the capsular polysaccharide. Introduction of protein conjugated polysaccharide vaccines (PCV) has reduced the incidence of IPD in children. Because children are the reservoir for other risk groups, in particular the elderly, introduction of PCV has indirectly also reduced the burden of IPD in latter risk group. The first generation of PCV consisted of the seven most prevalent pneumococcal serotypes. After implementation, replacement colonization of the upper respiratory tract with non-vaccine serotypes was observed and also replacement disease. Upcoming 24-valent PCVs will have a much broader coverage, but whether replacement disease now has been eliminated remains to be seen.

Keywords: Pneumococcal pneumonia, Streptococcus pneumoniae, Community-acquired pneumonia, Upper respiratory tract colonization, Invasive pneumococcal disease (IPD), Pneumococcal vaccines (PCV), Serotype replacement

Article Details

How to Cite
BOOM, Tom et al. What do you get? Transmission of pneumococcal pneumonia.. Medical Research Archives, [S.l.], v. 12, n. 8, aug. 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/5612>. Date accessed: 07 jan. 2025. doi: https://doi.org/10.18103/mra.v12i8.5612.
Section
Review Articles

References

1. Rijkers GT, Rodriguez Gomez M. Rocking pneumonia. Pneumonia (Nathan). 2017;9:18. doi:10.1186/s41479-017-0043-0

2. Wyllie AL, Chu ML, Schellens MH, et al. Streptococcus pneumoniae in saliva of Dutch primary school children. PLoS One. 2014;9(7):e 102045. doi:10.1371/journal.pone.0102045

3. Gundel M, Okura. Untersuchungen über das gleichzeitige Vorkommen mehrerer Pneumokokkentypen bei Gesunden und ihre Bedeutung für die Epidemiologie [in German]. Zeitschrift für Hyg und Infekt 1933;114: 678–704.

4. Althouse BM, Hammitt LL, Grant L, et al. Identifying transmission routes of Streptococcus pneumoniae and sources of acquisitions in high transmission communities. Epidemiol Infect. 2017; 145(13):2750-2758. doi:10.1017/S095026881700125X

5. Gray BM, Converse GM 3rd, Dillon HC Jr. Epidemiologic studies of Streptococcus pneumoniae in infants: acquisition, carriage, and infection during the first 24 months of life. J Infect Dis. 1980;142(6):923-933. doi:10.1093/infdis/142.6.923

6. Leino T, Auranen K, Jokinen J, Leinonen M, Tervonen P, Takala AK. Pneumococcal carriage in children during their first two years: important role of family exposure. Pediatr Infect Dis J. 2001;20(11) :1022-1027. doi:10.1097/00006454-200111000-00004

7. Syrjänen RK, Kilpi TM, Kaijalainen TH, Herva EE, Takala AK. Nasopharyngeal carriage of Streptococcus pneumoniae in Finnish children younger than 2 years old. J Infect Dis. 2001;184(4):451-459. doi: 10.1086/322048

8. Labout JA, Duijts L, Arends LR, et al. Factors associated with pneumococcal carriage in healthy Dutch infants: the generation R study. J Pediatr. 2008;153(6):771-776. doi:10.1016/j.jpeds.2008.05.061

9. Gratten M, Gratten H, Poli A, Carrad E, Raymer M, Koki G. Colonisation of Haemophilus influenzae and Streptococcus pneumoniae in the upper respiratory tract of neonates in Papua New Guinea: primary acquisition, duration of carriage, and relationship to carriage in mothers. Biol Neonate. 1986;50(2):114-120. doi:10.1159/000242576

10. Turner P, Turner C, Jankhot A, et al. A longitudinal study of Streptococcus pneumoniae carriage in a cohort of infants and their mothers on the Thailand-Myanmar border. PLoS One. 2012;7 (5):e38271. doi:10.1371/journal.pone.0038271

11. Coles CL, Kanungo R, Rahmathullah L, et al. Pneumococcal nasopharyngeal colonization in young South Indian infants. Pediatr Infect Dis J. 2001;20(3):289-295. doi:10.1097/00006454-20010 3000-00014

12. Kwambana BA, Barer MR, Bottomley C, Adegbola RA, Antonio M. Early acquisition and high nasopharyngeal co-colonisation by Streptococcus pneumoniae and three respiratory pathogens amongst Gambian new-borns and infants. BMC Infect Dis. 2011;11:175. doi:10.1186/ 1471-2334-11-175

13. Hill PC, Cheung YB, Akisanya A, et al. Nasopharyngeal carriage of Streptococcus pneumoniae in Gambian infants: a longitudinal study. Clin Infect Dis. 2008;46(6):807-814. doi:10. 1086/528688

14. Tigoi CC, Gatakaa H, Karani A, et al. Rates of acquisition of pneumococcal colonization and transmission probabilities, by serotype, among newborn infants in Kilifi District, Kenya. Clin Infect Dis. 2012;55(2):180-188. doi:10.1093/cid/cis371

15. Dube FS, Ramjith J, Gardner-Lubbe S, et al. Longitudinal characterization of nasopharyngeal colonization with Streptococcus pneumoniae in a South African birth cohort post 13-valent pneumococcal conjugate vaccine implementation. Sci Rep. 2018;8(1):12497. doi:10.1038/s41598-018 -30345-5

16. Otsuka T, Chang B, Shirai T, et al. Individual risk factors associated with nasopharyngeal colonization with Streptococcus pneumoniae and Haemophilus influenzae: a Japanese birth cohort study. Pediatr Infect Dis J. 2013;32(7):709-714. doi:10.1097/INF.0b013e31828701ea

17. Koliou MG, Andreou K, Lamnisos D, et al. Risk factors for carriage of Streptococcus pneumoniae in children. BMC Pediatr. 2018;18(1):144. Published 2018 Apr 26. doi:10.1186/s12887-018-1119-6

18. Weiser JN, Ferreira DM, Paton JC. Streptococcus pneumoniae: transmission, colonization and invasion. Nat Rev Microbiol. 2018;16(6):355-367. doi:10.1038/s41579-018-0001-8

19. Morimura A, Hamaguchi S, Akeda Y, Tomono K. Mechanisms Underlying Pneumococcal Transmission and Factors Influencing Host-Pneumococcus Interaction: A Review. Front Cell Infect Microbiol. 2021;11:639450. doi:10.3389/fci mb.2021.639450

20. Ganaie F, Saad JS, McGee L, et al. A New Pneumococcal Capsule Type, 10D, is the 100th Serotype and Has a Large cps Fragment from an Oral Streptococcus. mBio. 2020;11(3):e00937-20. doi:10.1128/mBio.00937-20

21. Bogaert D, Sluijter M, Toom NL, et al. Dynamics of pneumococcal colonization in healthy Dutch children. Microbiology (Reading). 2006;152 (Pt 2):377-385. doi:10.1099/mic.0.28394-0

22. Weinberger DM, Dagan R, Givon-Lavi N, Regev-Yochay G, Malley R, Lipsitch M. Epidemiologic evidence for serotype-specific acquired immunity to pneumococcal carriage. J Infect Dis. 2008;19 7(11):1511-1518. doi:10.1086/587941

23. Ozdemir B, Beyazova U, Camurdan AD, Sultan N, Ozkan S, Sahin F. Nasopharyngeal carriage of Streptococcus pneumoniae in healthy Turkish infants. J Infect. 2008;56(5):332-339. doi:10.1016/ j.jinf.2008.02.010

24. Saha SK, Hossain B, Islam M, et al. Epidemiology of Invasive Pneumococcal Disease in Bangladeshi Children Before Introduction of Pneumococcal Conjugate Vaccine. Pediatr Infect Dis J. 2016;35(6):655-661. doi:10.1097/INF.00000 00000001037

25. Sender V, Hentrich K, Henriques-Normark B. Virus-Induced Changes of the Respiratory Tract Environment Promote Secondary Infections With Streptococcus pneumoniae. Front Cell Infect Microbiol. 2021;11:643326. doi:10.3389/fcimb.20 21.643326

26. Rijkers G, Croon S, Nguyen TA. Rocking Pneumonia and the Boogie Woogie Flu. Eur Medical J. 2019; 48–54. doi.org/10.33590/emj/10311819

27. Silva MEP, Oliveira JR, Carvalho AG, et al. Colonization by Streptococcus pneumoniae among children in Porto Velho, Rondônia, Western Brazilian Amazon. Braz J Biol. 2022;82:e260617. doi:10.1590/1519-6984.260617

28. Chow EJ, Uyeki TM, Chu HY. The effects of the COVID-19 pandemic on community respiratory virus activity. Nat Rev Microbiol. 2023;21(3):195-210. doi:10.1038/s41579-022-00807-9

29. Brueggemann AB, Jansen van Rensburg MJ, Shaw D, et al. Changes in the incidence of invasive disease due to Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis during the COVID-19 pandemic in 26 countries and territories in the Invasive Respiratory Infection Surveillance Initiative: a prospective analysis of surveillance data. Lancet Digit Health. 2021;3(6):e360-e370. doi:10.1016/S2589-7500(21) 00077-7

30. Principi N, Autore G, Ramundo G, Esposito S. Epidemiology of Respiratory Infections during the COVID-19 Pandemic. Viruses. 2023;15(5). doi:10.3 390/v15051160

31. Achangwa C, Park H, Ryu S, Lee MS. Collateral Impact of Public Health and Social Measures on Respiratory Virus Activity during the COVID-19 Pandemic 2020–2021. Viruses. 2022;14(5). doi:10. 3390/v14051071

32. Tanislav C, Kostev K. Fewer non-COVID-19 respiratory tract infections and gastrointestinal infections during the COVID-19 pandemic. J Med Virol. 2022;94(1):298-302. Doi:10.1002/jmv.27321

33. RIVM. Epidemiological Impact and Effectiveness of COVID-19 Measures.; 2024. https://open.overheid.nl/documenten/2c1c4e77-1b0b-4808-9098-2b47b331369d/file (assessed June 26, 2024)

34. Feldman C, Anderson R. Recent advances in the epidemiology and prevention of Streptococcus pneumoniae infections. F1000Res. 2020;9. doi:10. 12688/f1000research.22341.1

35. Briles DE, Paton JC, Mukerji R, Swiatlo E, Crain MJ. Pneumococcal Vaccines. Microbiol Spectr. 2019;7(6):10.1128/microbiolspec.gpp3-0028-2018. doi:10.1128/microbiolspec.GPP3-0028-2018

36. Berical AC, Harris D, Dela Cruz CS, Possick JD. Pneumococcal Vaccination Strategies. An Update and Perspective. Ann Am Thorac Soc. 2016;13(6): 933-944. doi:10.1513/AnnalsATS.201511-778FR

37. Shapiro ED, Berg AT, Austrian R, et al. The protective efficacy of polyvalent pneumococcal polysaccharide vaccine. N Engl J Med. 1991;325(2 1):1453-1460. doi:10.1056/NEJM199111213252101

38. Ortqvist A, Hedlund J, Burman LA, et al. Randomised trial of 23-valent pneumococcal capsular polysaccharide vaccine in prevention of pneumonia in middle-aged and elderly people. Swedish Pneumococcal Vaccination Study Group. Lancet. 1998;351(9100):399-403. doi:10.1016/s01 40-6736(97)07358-3

39. Honkanen PO, Keistinen T, Miettinen L, et al. Incremental effectiveness of pneumococcal vaccine on simultaneously administered influenza vaccine in preventing pneumonia and pneumococcal pneumonia among persons aged 65 years or older. Vaccine. 1999;17(20-21):2493-2500. doi:10.1016/s 0264-410x(99)00069-9

40. Rijkers GT, Mosier DE. Pneumococcal polysaccharides induce antibody formation by human B lymphocytes in vitro. J Immunol. 1985;135(1):1-4.

41. Griffioen AW, Sanders L, Rijkers GT, Zegers BJ. Cell biology of B lymphocyte activation by polysaccharides. J Infect Dis. 1992;165 Suppl 1:S71-S73. doi:10.1093/infdis/165-supplement_1-s71

42. Käyhty H, Eskola J. New vaccines for the prevention of pneumococcal infections. Emerg Infect Dis. 1996;2(4):289-298. doi:10.3201/eid0204 .960404

43. Avery OT, Goebel WF, Babers FH. Chemo-immunological studies on conjugated carbohydrate-proteins: VII. Immunological specificity of antigens prepared by combining alpha- and beta-glucosides of glucose with proteins. J Exp Med. 1932 Apr 30;55(5):769-80. doi: 10.1084/jem. 55.5.769

44. Black S, Shinefield H, Fireman B, et al. Efficacy, safety and immunogenicity of heptavalent pneumococcal conjugate vaccine in children. Northern California Kaiser Permanente Vaccine Study Center Group. Pediatr Infect Dis J. 2000;19(3 ):187-195. doi:10.1097/00006454-200003000-00003

45. Black SB, Shinefield HR, Ling S, et al. Effectiveness of heptavalent pneumococcal conjugate vaccine in children younger than five years of age for prevention of pneumonia. Pediatr Infect Dis J. 2002;21(9):810-815. doi:10.1097/000 06454-200209000-00005

46. Whitney CG, Pilishvili T, Farley MM, et al. Effectiveness of seven-valent pneumococcal conjugate vaccine against invasive pneumococcal disease: a matched case-control study. Lancet. 2006;368(9546):1495-1502. doi:10.1016/S0140-67 36(06)69637-2

47. Pilishvili T, Lexau C, Farley MM, et al. Sustained reductions in invasive pneumococcal disease in the era of conjugate vaccine. J Infect Dis. 2010;201(1):32-41. doi:10.1086/648593

48. Hsu HE, Shutt KA, Moore MR, et al. Effect of pneumococcal conjugate vaccine on pneumococcal meningitis. N Engl J Med. 2009;360 (3):244-256. doi:10.1056/NEJMoa0800836

49. McEllistrem MC, Nahm MH. Novel pneumococcal serotypes 6C and 6D: anomaly or harbinger. Clin Infect Dis. 2012;55(10):1379-1386. doi:10.1093/cid/cis691 World Health Organization. Pneumococcal conjugate vaccines in infants and children under 5 years of age: WHO position paper. Weekly epidemiological record 2019; 8, 94: 85–104

50. Esposito S, Principi N. Impacts of the 13-Valent Pneumococcal Conjugate Vaccine in Children. J Immunol Res. 2015;2015:591580. doi:10.1155/201 5/591580

51. Bonten MJ, Huijts SM, Bolkenbaas M, et al. Polysaccharide conjugate vaccine against pneumococcal pneumonia in adults. N Engl J Med. 2015;372(12):1114-1125. doi:10.1056/NEJMoa1408544

52. Wassil J, Sisti M, Fairman J, et al. Evaluating the safety, tolerability, and immunogenicity of a 24-valent pneumococcal conjugate vaccine (VAX-24) in healthy adults aged 18 to 64 years: a phase 1/2, double-masked, dose-finding, active-controlled, randomised clinical trial. Lancet Infect Dis. 2024;24 (3):308-318. doi:10.1016/S1473-3099(23)00572-8

53. Borys D, Rupp R, Smulders R, et al. Safety, tolerability and immunogenicity of a novel 24-valent pneumococcal vaccine in toddlers: A phase 1 randomized controlled trial. Vaccine. 2024;42(10) :2560-2571. doi:10.1016/j.vaccine.2024.02.001

54. Miao C, Yan Z, Chen C, et al. Serotype, antibiotic susceptibility and whole-genome characterizatio of Streptococcus pneumoniae in all age groups living in Southwest China during 2018-2022. Front Microbiol. 2024;15:1342839. doi:10.3 389/fmicb.2024.1342839

55. Dirmesropian S, Wood JG, MacIntyre CR, Newall AT. A review of economic evaluations of 13-valent pneumococcal conjugate vaccine (PCV13) in adults and the elderly. Hum Vaccin Immunother. 2015;11(4):818-825. doi:10.1080/21645515.2015.1011954

56. Lexau CA, Lynfield R, Danila R, et al. Changing epidemiology of invasive pneumococcal disease among older adults in the era of pediatric pneumococcal conjugate vaccine. JAMA. 2005;29 4(16):2043-2051. doi:10.1001/jama.294.16.2043

57. Vila-Córcoles A. Advances in pneumococcal vaccines: what are the advantages for the elderly?. Drugs Aging. 2007;24(10):791-800. doi:10.2165/0 0002512-200724100-00001

58. Tsaban G, Ben-Shimol S. Indirect (herd) protection, following pneumococcal conjugated vaccines introduction: A systematic review of the literature. Vaccine. 2017;35(22):2882-2891. doi:10. 1016/j.vaccine.2017.04.032

59. Sando E, Suzuki M, Furumoto A, et al. Impact of the pediatric 13-valent pneumococcal conjugate vaccine on serotype distribution and clinical characteristics of pneumococcal pneumonia in adults: The Japan Pneumococcal Vaccine Effectiveness Study (J-PAVE) Vaccine. 2019;37(20) :2687-2693. doi:10.1016/j.vaccine.2019.04.009

60. Hanquet G, Krizova P, Valentiner-Branth P, et al. Effect of childhood pneumococcal conjugate vaccination on invasive disease in older adults of 10 European countries: implications for adult vaccination. Thorax. 2019;74(5):473-482. doi:10.11 36/thoraxjnl-2018-211767

61. van Werkhoven CH, Hollingsworth RC, Huijts SM, et al. Pneumococcal conjugate vaccine herd effects on non-invasive pneumococcal pneumonia in elderly. Vaccine. 2016;34(28):3275-3282. doi:10. 1016/j.vaccine.2016.05.002

62. Desmet S, Wouters I, Heirstraeten L Van, et al. In-depth analysis of pneumococcal serotypes in Belgian children (2015–2018): Diversity, invasive disease potential, and antimicrobial susceptibility in carriage and disease. Vaccine. 2021;39(2):372-379. Doi:10.1016/j.vaccine.2020.11.044

63. Keck JW, Wenger JD, Bruden DL, et al. PCV7-induced changes in pneumococcal carriage and invasive disease burden in Alaskan children. Vaccine. 2014;32(48):6478-6484. doi:10.1016/j.vac cine.2014.09.037

64. Roca A, Hill PC, Townend J, et al. Effects of community-wide vaccination with PCV-7 on pneumococcal nasopharyngeal carriage in the Gambia: A cluster-randomized trial. PLoS Med. 2011;8(10). doi:10.1371/journal.pmed.1001107

65. Gonzales BE, Mercado EH, Castillo-Tokumori F, et al. Pneumococcal serotypes and antibiotic resistance in healthy carriage children after introduction of PCV13 in Lima, Peru. Vaccine. 2023; 41(28):4106-4113. doi:10.1016/j.vaccine.2023.05.042

66. Collins DA, Hoskins A, Snelling T, et al. Predictors of pneumococcal carriage and the effect of the 13-valent pneumococcal conjugate vaccination in the Western Australian Aboriginal population. Pneumonia. 2017;9(1). doi:10.1186/s4 1479-017-0038-x

67. Bruce MG, Singleton R, Bulkow L, et al. Impact of the 13-valent pneumococcal conjugate vaccine (pcv13) on invasive pneumococcal disease and carriage in Alaska. Vaccine. 2015;33(38):4813-4819. doi:10.1016/j.vaccine.2015.07.080

68. Roca A, Dione MM, Bojang A, et al. Nasopharyngeal Carriage of Pneumococci Four Years after Community-Wide Vaccination with PCV-7 in The Gambia: Long-Term Evaluation of a Cluster Randomized Trial. PLoS One. 2013;8(9). doi:10.1371/journal.pone.0072198

69. Roca A, Bojang A, Bottomley C, et al. Effect on nasopharyngeal pneumococcal carriage of replacing PCV7 with PCV13 in the Expanded Programme of Immunization in The Gambia. Vaccine. 2015;33(51):7144-7151. doi:10.1016/j.vac cine.2015.11.012

70. Gladstone RA, Jefferies JM, Tocheva AS, et al. Five winters of pneumococcal serotype replacement in UK carriage following PCV introduction. Vaccine. 2015;33(17):2015-2021. doi:10.1016/j.vaccine.201 5.03.012

71. Weinberger DM, Malley R, Lipsitch M. Serotype replacement in disease after pneumococcal vaccination. Lancet. 2011;378(9807):1962-1973. doi:10.1016/S0140-6736(10)62225-8

72. Hicks LA, Harrison LH, Flannery B, et al. Incidence of pneumococcal disease due to non-pneumococcal conjugate vaccine (PCV7) serotypes in the United States during the era of widespread PCV7 vaccination, 1998-2004. J Infect Dis. 2007;196(9):1346-1354. doi:10.1086/521626

73. Singleton RJ, Hennessy TW, Bulkow LR, et al. Invasive pneumococcal disease caused by nonvaccine serotypes among Alaska native children with high levels of 7-valent pneumococcal conjugate vaccine coverage. JAMA. 2007;297(16) :1784-1792. doi:10.1001/jama.297.16.1784