Macular edema in ocular inflammation

Main Article Content

Prim. Dr Jelena Paovic

Abstract

Aim of this paper is to present the pathophysiological processes and the ultrastructure of the retina, important for the formation and development of macular edema. Macular edema is defined as an abnormal leakage and fluid and/ protein accumulation in the external plexiform layer and inner nuclear layer (on/under the macula), as well as swelling of Muller cells that lead to its thickening and swelling. It occurs as consequence of increased leakage from the retinal perifoveal capillaries and consequential macular thickening that, if it lasts longer than 6 months, is seen as chronic in nature. Based on clinical and imaging techniques, macular edema is classified as ischemic and non-ischemic (cystoid or diffuse). Macular edema is not an isolated ocular disease but is rather a complication of an isolated ocular inflammation or of an ocular inflammation that's associated with systemic non-infectious (autoimmune) or infectious diseases. This paper, in addition to the pathogenesis and clinical manifestations of macular edema, also briefly covers imaging and treatment procedures and emphasizes the importance of treating the underlying inflammatory diseases that has led to the formation of the macular edema.


Methods: This was a retrospective and observational study.

Keywords: blood retinal barrier; Muller cells; retinal pigment epithelium; cytokine; inner blood retinal barrier; outer blood retinal barrier; optical coherence tomography; angiography; ocular inflammation; macular edema.

Article Details

How to Cite
PAOVIC, Prim. Dr Jelena. Macular edema in ocular inflammation. Medical Research Archives, [S.l.], v. 12, n. 8, sep. 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/5621>. Date accessed: 04 dec. 2024. doi: https://doi.org/10.18103/mra.v12i8.5621.
Section
Research Articles

References

1. Tariq Bhatti M, et al. 2021-2022 Basic and Clinical Science Course, Section 05: Neuro-Ophthalmology. American Academy of Ophthalmology. 2020.

2. Brar VS, et al. 2020-2021 Basic and Clinical Science Course, Section 02: Fundamentals and Principles of Ophthalmology. American Academy of Ophthalmology. 2020.

3. Govetto A, Hubschman J, Sarraf D, et al. The role of Müller cells in tractional macular disorders: An Optical Coherence Tomography Study and physical model of Mechanical Force transmission, British Journal of Ophthalmology. 2019;104(4): 466–472. doi:10.1136/bjophthalmol-2019-314245

4. Yamada E. Some structural features of the fovea centralis in the human retina. Arch Ophthal 1969;82:151–9.

5. Gass JD. Müller cell cone, an overlooked part of the anatomy of the fovea centralis: hypotheses concerning its role in the pathogenesis of macular hole and foveomacualr retinoschisis. Arch Ophthalmol. 1999;117(6):821-823. doi:10.1001/archopht.117.6.821

6. Li M, Huisingh C, Messinger J, et al. Histology of geographic atrophy secondary to age-related macular degeneration: A Multilayer Approach. Retina. 2018;38(10):1937-1953. doi:10.1097/IAE.0000000000002182

7. Burris C, Klug K, Ngo IT, et al. How Müller glial cells in macaque fovea coat and isolate the synaptic terminals of cone photoreceptors. J Comp Neurol. 2002;453(1):100-111. doi:10.1002/cne.10397

8. McCannel CA, et al. 2020-2021 Basic and Clinical Science Course, Section 12: Retina and Vitreous. American Academy of Ophthalmology. 2020.

9. Testi I, Rousselot A, Agrawal R, Pavesio C. Pathophysiology of uveitic macular edema’, Complications in Uveitis. 2020; pp.171–181. doi:10.1007/978-3-030-28392-6_12

10. Daruich A, Matet A, Moulin A, et al. Mechanism of macular edema: beyond the surface. Prog Retin Eye Res. 2018;63:20–68. doi:10.1016/j.preteyeres.2017.10.006

11. Díaz-Coránguez M, Ramos C, Antonetti DA. The inner blood-retinal barrier: cellular basis and development. Vis Res. 2017;139:123–37.

12. Yao H, Wang T, Deng J, Liu D, Li X, Deng J. The development of blood-retinal barrier during the interaction of astrocytes with vascular wall cells. Neural Regen Res. 2014;9(10):1047–54.
doi:10.4103/1673-5374.133169

13. Park DY, Lee J, Kim J, et al. Plastic roles of pericytes in the blood-retinal barrier. Nat Commun. 2017;8:15296. doi:10.1038/ncomms15296

14. de Smet MD. Insights into the physiopathology of inflammatory macular edema. Dev Ophthalmol. 2017;58:168–77. doi:10.1159/000455279

15. Paovic J, Paovic P, Stanojevic - Paovic A, Sredovic V. Diagnostic procedures and follow up of macular microstructural changes in patients with uveitis as seen on optical coherence tomography, Journal of Cytology & Histology. 2014;05(02). doi:10.4172/2157-7099.1000211

16. Paovic J, Paovic P, Stanojevic - Paovic A. Treatment of Retinal Vasculitis and its’ Complications in Systemic Vasculitis’, Treatment of Vasculitis, Gr upSM. 2016:1-23.

17. Paovic J, Paovic P. Spontaneous evolution of lamellar macular hole into full thickness macular hole, and resolution of the same, followed by optical coherence tomography, Ophthalmology Research: An International Journal. 2016; 5(4):1–7. doi:10.9734/or/2016/25581

18. Paovic J, Paovic P, Stanojevic - Paovic A. Correlation between epiretinal membrane bridging, visual acuity and central macular thicknes, Journal of Cytology & Histology. 2017; 08(04). doi:10.4172/2157-7099.1000471

19. Oster SF, Mojana F, Brar M, Yuson RM, Cheng L, Freeman WR. Disruption of the photoreceptor inner segment/outer segment layer on spectral domain-optical coherence tomography is a predictor of poor visual acuity in patients with epiretinal membranes. Retina. 2010;30(5):713-718. doi:10.1097/IAE.0b013e3181c596e3

20. Nigam N, Bartsch DU, Cheng L, et al. Spectral domain optical coherence tomography for imaging ERM, retinal edema, and vitreomacular interface. Retina. 2010;30(2):246-253. doi:10.1097/IAE.0b013e3181baf6dc

21. Ota A, Tanaka Y, Toyoda F, et al. Relationship between variations in posterior vitreous detachment and visual prognosis in idiopathic epiretinal membranes. Clin Ophthalmol. 2015;10:7-11.
doi:10.2147/OPTH.S89683

22. de Smet MD, Okada AA. Cystoid macular edema in uveitis. Dev Ophthalmol. 2010;47:136–47. Review. doi:10.1159/000320077

23. Rothova A. Inflammatory cystoid macular edema. Curr Opin Ophthalmol. 2007;18(6):487–92. Review. doi:10.1097/ICU.0b013e3282f03d2e

24. Fardeau C, Champion E, Massamba N, LeHoang P. Uveitic macular edema. Eye (Lond). 2016;30(10): 1277-1292. doi:10.1038/eye.2016.115

25. Bringmann A, Iandiev I, Pannicke T, et al. Cellular signaling and factors involved in Müller cell gliosis: neuroprotective and detrimental effects. Prog Retin Eye Res. 2009;28(6):423-451.
doi:10.1016/j.preteyeres.2009.07.001

26. Bringmann A, Syrbe S, Görner K, et al. The primate fovea: structure, function and development. Prog Retin Eye Res. 2018;66:49-84. doi:10.1016/j.preteyeres.2018.03.006

27. Zhao T, Li Y, Weng C, Yin Z. The changes of potassium currents in RCS rat Müller cell during retinal degeneration. Brain Res. 2012;1427:78–87. doi:10.1016/j.brainres.2011.10.011

28. Johnson MW: Etiology and treatment of macular edema. Am J Ophthalmol. 2009;147:11–21.e1. doi:10.1016/j.ajo.2008.07.024

29. van Kooij B, Rothova A, Rijkers GT, de Groot-Mijnes JD: Distinct cytokine and chemokine profiles in the aqueous of patients with uveitis and cystoid macular edema. Am J Ophthalmol . 2006;142:192–194. doi:10.1016/j.ajo.2006.02.052

30. Harada C, Mitamura Y, Harada T. The role of cytokines and trophic factors in epiretinal membranes: involvement of signal transduction in glial cells. Prog Retin Eye Res. 2006;25(2):149–64.
doi:10.1016/j.preteyeres.2005.09.001

31. Sen HN, et al. 2020-2021 Basic and Clinical Science Course, Section 09: Uveitis and Ocular Inflammation. American Academy of Ophthalmology. 2020.

32. Gangaputra S. IUSG Webinar online June 3, 2023

33. Hunter RS, Skondra D, Papaliodis G, Sobrin L. Role of OCT in the diagnosis and management of macular edema from uveitis. Seminars in Ophthalmology. 2012;27(5-6):236-241. doi:10.3109/08820538.2012.708813