T Cell Repertoire in Lupus: Autoreactive T Cells in Central and Peripheral Selection
Main Article Content
Abstract
Systemic lupus erythematosus (SLE) is an immune disorder characterized by the presence of T and B cells which drive a pathogenic autoimmune response. Autoreactive T effector cells naturally arise during the process of development in the thymus, but most are removed by several self-tolerance mechanisms. Self-antigen recognizing T cells emigrating from the thymus are normally prevented from causing cellular or tissue damage by peripheral tolerance mechanisms. While we understand much about how self-antigens are presented to T cells and the mechanisms to remove those T cells or convert them into regulatory T cells in thymus and peripheral lymphoid organs, we understand much less about the derivation of potentially pathogenic self-reactive T cells in autoimmune disease. It is not clear whether individuals with autoreactive T cell activation have an altered T cell receptor repertoire of naïve T cells that have matured to immunocompetence as effector cells or whether the pathogenic process involves altered activation of immunocompetent T cells in the periphery. There is increasing evidence that the autoantibodies that characterize SLE result from an interaction of B cells with self-reactive T cells. Here we summarize the evidence for autoreactive T cells in both lupus mouse models and in patients with SLE and discuss the evidence for either altered T cell selection or altered T cell activation in SLE, which has implications for both pathogenesis and treatment
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Rudolph MG, Stanfield RL, Wilson IA. How TCRs bind MHCs, peptides, and coreceptors. Annu Rev Immunol. 2006;24:419-66. doi:10.1146/annurev.immunol.23.021704.115658
3. Suarez-Fueyo A, Bradley SJ, Tsokos GC. T cells in Systemic Lupus Erythematosus. Curr Opin Immunol. Dec 2016;43:32-38. doi:10.1016/j.coi.2016.09.001
4. Li H, Boulougoura A, Endo Y, Tsokos GC. Abnormalities of T cells in systemic lupus erythematosus: new insights in pathogenesis and therapeutic strategies. J Autoimmun. Oct 2022;132:102870. doi:10.1016/j.jaut.2022.102870
5. Malkiel S, Jeganathan V, Wolfson S, et al. Checkpoints for Autoreactive B Cells in the Peripheral Blood of Lupus Patients Assessed by Flow Cytometry. Arthritis Rheumatol. Sep 2016;68(9):2210-20. doi:10.1002/art.39710
6. Crow MK, DelGiudice-Asch G, Zehetbauer JB, et al. Autoantigen-specific T cell proliferation induced by the ribosomal P2 protein in patients with systemic lupus erythematosus. J Clin Invest. Jul 1994;94(1):345-52. doi:10.1172/JCI117328
7. Klein L, Hinterberger M, Wirnsberger G, Kyewski B. Antigen presentation in the thymus for positive selection and central tolerance induction. Nat Rev Immunol. Dec 2009;9(12):833-44. doi:10.1038/nri2669
8. Kyewski B, Klein L. A central role for central tolerance. Annu Rev Immunol. 2006;24:571-606. doi:10.1146/annurev.immunol.23.021704.115601
9. Lee HM, Bautista JL, Scott-Browne J, Mohan JF, Hsieh CS. A broad range of self-reactivity drives thymic regulatory T cell selection to limit responses to self. Immunity. Sep 21 2012;37(3):475-86. doi:10.1016/j.immuni.2012.07.009
10. Nedjic J, Aichinger M, Emmerich J, Mizushima N, Klein L. Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature. Sep 18 2008;455(7211):396-400. doi:10.1038/nature07208
11. Florea BI, Verdoes M, Li N, et al. Activity-based profiling reveals reactivity of the murine thymoproteasome-specific subunit beta5t. Chem Biol. Aug 27 2010;17(8):795-801. doi:10.1016/j.chembiol.2010.05.027
12. Nakagawa T, Roth W, Wong P, et al. Cathepsin L: critical role in Ii degradation and CD4 T cell selection in the thymus. Science. Apr 17 1998;280(5362):450-3. doi:10.1126/science.280.5362.450
13. Gommeaux J, Gregoire C, Nguessan P, et al. Thymus-specific serine protease regulates positive selection of a subset of CD4+ thymocytes. Eur J Immunol. Apr 2009;39(4):956-64. doi:10.1002/eji.200839175
14. McCaughtry TM, Baldwin TA, Wilken MS, Hogquist KA. Clonal deletion of thymocytes can occur in the cortex with no involvement of the medulla. J Exp Med. Oct 27 2008;205(11):2575-84. doi:10.1084/jem.20080866
15. Melichar HJ, Ross JO, Herzmark P, Hogquist KA, Robey EA. Distinct temporal patterns of T cell receptor signaling during positive versus negative selection in situ. Sci Signal. Oct 15 2013;6(297):ra92. doi:10.1126/scisignal.2004400
16. Takaba H, Morishita Y, Tomofuji Y, et al. Fezf2 Orchestrates a Thymic Program of Self-Antigen Expression for Immune Tolerance. Cell. Nov 5 2015;163(4):975-87. doi:10.1016/j.cell.2015.10.013
17. Hubert FX, Kinkel SA, Davey GM, et al. Aire regulates the transfer of antigen from mTECs to dendritic cells for induction of thymic tolerance. Blood. Sep 1 2011;118(9):2462-72. doi:10.1182/blood-2010-06-286393
18. Yu W, Jiang N, Ebert PJ, et al. Clonal Deletion Prunes but Does Not Eliminate Self-Specific alphabeta CD8(+) T Lymphocytes. Immunity. May 19 2015;42(5):929-41. doi:10.1016/j.immuni.2015.05.001
19. La Gruta NL, Rothwell WT, Cukalac T, et al. Primary CTL response magnitude in mice is determined by the extent of naive T cell recruitment and subsequent clonal expansion. J Clin Invest. Jun 2010;120(6):1885-94. doi:10.1172/JCI41538
20. La Gruta NL, Thomas PG, Webb AI, et al. Epitope-specific TCRbeta repertoire diversity imparts no functional advantage on the CD8+ T cell response to cognate viral peptides. Proc Natl Acad Sci U S A. Feb 12 2008;105(6):2034-9. doi:10.1073/pnas.0711682102
21. Gascoigne NR, Rybakin V, Acuto O, Brzostek J. TCR Signal Strength and T Cell Development. Annu Rev Cell Dev Biol. Oct 6 2016;32:327-348. doi:10.1146/annurev-cellbio-111315-125324
22. Zikherman J, Au-Yeung B. The role of T cell receptor signaling thresholds in guiding T cell fate decisions. Curr Opin Immunol. Apr 2015;33:43-8. doi:10.1016/j.coi.2015.01.012
23. Fucikova J, Palova-Jelinkova L, Bartunkova J, Spisek R. Induction of Tolerance and Immunity by Dendritic Cells: Mechanisms and Clinical Applications. Front Immunol. 2019;10:2393. doi:10.3389/fimmu.2019.02393
24. Laffont S, Siddiqui KR, Powrie F. Intestinal inflammation abrogates the tolerogenic properties of MLN CD103+ dendritic cells. Eur J Immunol. Jul 2010;40(7):1877-83. doi:10.1002/eji.200939957
25. Bourges D, Ross EM, Allen S, et al. Transient systemic inflammation does not alter the induction of tolerance to gastric autoantigens by migratory dendritic cells. J Immunol. Jun 1 2014;192(11):5023-30. doi:10.4049/jimmunol.1303429
26. Lee YK, Menezes JS, Umesaki Y, Mazmanian SK. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A. Mar 15 2011;108 Suppl 1(Suppl 1):4615-22. doi:10.1073/pnas.1000082107
27. Jubair WK, Hendrickson JD, Severs EL, et al. Modulation of Inflammatory Arthritis in Mice by Gut Microbiota Through Mucosal Inflammation and Autoantibody Generation. Arthritis Rheumatol. Aug 2018;70(8):1220-1233. doi:10.1002/art.40490
28. Zhang X, Zhang D, Jia H, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med. Aug 2015;21(8):895-905. doi:10.1038/nm.3914
29. Horai R, Zarate-Blades CR, Dillenburg-Pilla P, et al. Microbiota-Dependent Activation of an Autoreactive T Cell Receptor Provokes Autoimmunity in an Immunologically Privileged Site. Immunity. Aug 18 2015;43(2):343-53. doi:10.1016/j.immuni.2015.07.014
30. Lopez P, de Paz B, Rodriguez-Carrio J, et al. Th17 responses and natural IgM antibodies are related to gut microbiota composition in systemic lupus erythematosus patients. Sci Rep. Apr 5 2016;6:24072. doi:10.1038/srep24072
31. Sprouse ML, Bates NA, Felix KM, Wu HJ. Impact of gut microbiota on gut-distal autoimmunity: a focus on T cells. Immunology. Apr 2019;156(4):305-318. doi:10.1111/imm.13037
32. Yang W, Yu T, Cong Y. CD4(+) T cell metabolism, gut microbiota, and autoimmune diseases: implication in precision medicine of autoimmune diseases. Precis Clin Med. Sep 2022;5(3):pbac018. doi:10.1093/pcmedi/pbac018
33. Olson JK, Eagar TN, Miller SD. Functional activation of myelin-specific T cells by virus-induced molecular mimicry. J Immunol. Sep 1 2002;169(5):2719-26. doi:10.4049/jimmunol.169.5.2719
34. Kaliyaperumal A, Mohan C, Wu W, Datta SK. Nucleosomal peptide epitopes for nephritis-inducing T helper cells of murine lupus. J Exp Med. Jun 1 1996;183(6):2459-69. doi:10.1084/jem.183.6.2459
35. Mohan C, Adams S, Stanik V, Datta SK. Nucleosome: a major immunogen for pathogenic autoantibody-inducing T cells of lupus. J Exp Med. May 1 1993;177(5):1367-81. doi:10.1084/jem.177.5.1367
36. Lu L, Kaliyaperumal A, Boumpas DT, Datta SK. Major peptide autoepitopes for nucleosome-specific T cells of human lupus. J Clin Invest. Aug 1999;104(3):345-55. doi:10.1172/JCI6801
37. van Beers J, Schreurs MWJ. Anti-Sm antibodies in the classification criteria of systemic lupus erythematosus. J Transl Autoimmun. 2022;5:100155. doi:10.1016/j.jtauto.2022.100155
38. Hoch SO, Eisenberg RA, Sharp GC. Diverse antibody recognition patterns of the multiple Sm-D antigen polypeptides. Clin Immunol. Aug 1999;92(2):203-8. doi:10.1006/clim.1999.4745
39. Riemekasten G, Langnickel D, Enghard P, et al. Intravenous injection of a D1 protein of the Smith proteins postpones murine lupus and induces type 1 regulatory T cells. J Immunol. Nov 1 2004;173(9):5835-42. doi:10.4049/jimmunol.173.9.5835
40. Monneaux F, Lozano JM, Patarroyo ME, Briand JP, Muller S. T cell recognition and therapeutic effect of a phosphorylated synthetic peptide of the 70K snRNP protein administered in MR/lpr mice. Eur J Immunol. Feb 2003;33(2):287-96. doi:10.1002/immu.200310002
41. Monneaux F, Muller S. Peptide-based immunotherapy of systemic lupus erythematosus. Autoimmun Rev. Jan 2004;3(1):16-24.
doi:10.1016/S1568-9972(03)00061-2
42. Riemekasten G, Weiss C, Schneider S, et al. T cell reactivity against the SmD1(83-119) C terminal peptide in patients with systemic lupus erythematosus. Ann Rheum Dis. Sep 2002;61(9):779-85. doi:10.1136/ard.61.9.779
43. Riemekasten G, Langnickel D, Ebling FM, et al. Identification and characterization of SmD183-119-reactive T cells that provide T cell help for pathogenic anti-double-stranded DNA antibodies. Arthritis Rheum. Feb 2003;48(2):475-85. doi:10.1002/art.10762
44. Kattah NH, Newell EW, Jarrell JA, et al. Tetramers reveal IL-17-secreting CD4+ T cells that are specific for U1-70 in lupus and mixed connective tissue disease. Proc Natl Acad Sci U S A. Mar 10 2015;112(10):3044-9. doi:10.1073/pnas.1424796112
45. Geiger R, Duhen T, Lanzavecchia A, Sallusto F. Human naive and memory CD4+ T cell repertoires specific for naturally processed antigens analyzed using libraries of amplified T cells. J Exp Med. Jul 6 2009;206(7):1525-34. doi:10.1084/jem.20090504
46. Abdirama D, Tesch S, Griessbach AS, et al. Nuclear antigen-reactive CD4(+) T cells expand in active systemic lupus erythematosus, produce effector cytokines, and invade the kidneys. Kidney Int. Jan 2021;99(1):238-246. doi:10.1016/j.kint.2020.05.051
47. Tesch S, Abdirama D, Griessbach AS, et al. Identification and characterization of antigen-specific CD4(+) T cells targeting renally expressed antigens in human lupus nephritis with two independent methods. Sci Rep. Dec 4 2020;10(1):21312. doi:10.1038/s41598-020-78223-3
48. Michaels MA, Kang HK, Kaliyaperumal A, Satyaraj E, Shi Y, Datta SK. A defect in deletion of nucleosome-specific autoimmune T cells in lupus-prone thymus: role of thymic dendritic cells. J Immunol. Nov 1 2005;175(9):5857-65. doi:10.4049/jimmunol.175.9.5857
49. Desai-Mehta A, Mao C, Rajagopalan S, Robinson T, Datta SK. Structure and specificity of T cell receptors expressed by potentially pathogenic anti-DNA autoantibody-inducing T cells in human lupus. J Clin Invest. Feb 1995;95(2):531-41. doi:10.1172/JCI117695
50. Greidinger EL, Gazitt T, Jaimes KF, Hoffman RW. Human T cell clones specific for heterogeneous nuclear ribonucleoprotein A2 autoantigen from connective tissue disease patients assist in autoantibody production. Arthritis Rheum. Jul 2004;50(7):2216-22. doi:10.1002/art.20287
51. Wildin RS, Ramsdell F, Peake J, et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet. Jan 2001;27(1):18-20. doi:10.1038/83707
52. Haribhai D, Williams JB, Jia S, et al. A requisite role for induced regulatory T cells in tolerance based on expanding antigen receptor diversity. Immunity. Jul 22 2011;35(1):109-22. doi:10.1016/j.immuni.2011.03.029
53. Josefowicz SZ, Niec RE, Kim HY, et al. Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature. Feb 8 2012;482(7385):395-9. doi:10.1038/nature10772
54. Jordan MS, Boesteanu A, Reed AJ, et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol. Apr 2001;2(4):301-6. doi:10.1038/86302
55. Moran AE, Holzapfel KL, Xing Y, et al. T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. J Exp Med. Jun 6 2011;208(6):1279-89. doi:10.1084/jem.20110308
56. Apostolou I, Sarukhan A, Klein L, von Boehmer H. Origin of regulatory T cells with known specificity for antigen. Nat Immunol. Aug 2002;3(8):756-63. doi:10.1038/ni816
57. Kieback E, Hilgenberg E, Stervbo U, et al. Thymus-Derived Regulatory T Cells Are Positively Selected on Natural Self-Antigen through Cognate Interactions of High Functional Avidity. Immunity. May 17 2016;44(5):1114-26. doi:10.1016/j.immuni.2016.04.018
58. Feng Y, van der Veeken J, Shugay M, et al. A mechanism for expansion of regulatory T-cell repertoire and its role in self-tolerance. Nature. Dec 3 2015;528(7580):132-136. doi:10.1038/nature16141
59. Wyss L, Stadinski BD, King CG, et al. Affinity for self antigen selects Treg cells with distinct functional properties. Nat Immunol. Sep 2016;17(9):1093-101. doi:10.1038/ni.3522
60. Eggenhuizen PJ, Cheong RMY, Lo C, et al. Smith-specific regulatory T cells halt the progression of lupus nephritis. Nat Commun. Feb 6 2024;15(1):899. doi:10.1038/s41467-024-45056-x
61. Nagamine K, Peterson P, Scott HS, et al. Positional cloning of the APECED gene. Nat Genet. Dec 1997;17(4):393-8. doi:10.1038/ng1297-393
62. Ramsey C, Winqvist O, Puhakka L, et al. Aire deficient mice develop multiple features of APECED phenotype and show altered immune response. Hum Mol Genet. Feb 15 2002;11(4):397-409. doi:10.1093/hmg/11.4.397
63. Tucker E, O'Donnell K, Fuchsberger M, et al. A novel mutation in the Nfkb2 gene generates an NF-kappa B2 "super repressor". J Immunol. Dec 1 2007;179(11):7514-22. doi:10.4049/jimmunol.179.11.7514
64. Zhang B, Wang Z, Ding J, Peterson P, Gunning WT, Ding HF. NF-kappaB2 is required for the control of autoimmunity by regulating the development of medullary thymic epithelial cells. J Biol Chem. Dec 15 2006;281(50):38617-24. doi:10.1074/jbc.M606705200
65. Zhu M, Chin RK, Christiansen PA, et al. NF-kappaB2 is required for the establishment of central tolerance through an Aire-dependent pathway. J Clin Invest. Nov 2006;116(11):2964-71. doi:10.1172/JCI28326
66. Hauck F, Randriamampita C, Martin E, et al. Primary T-cell immunodeficiency with immunodysregulation caused by autosomal recessive LCK deficiency. J Allergy Clin Immunol. Nov 2012;130(5):1144-1152 e11. doi:10.1016/j.jaci.2012.07.029
67. Keller B, Zaidman I, Yousefi OS, et al. Early onset combined immunodeficiency and autoimmunity in patients with loss-of-function mutation in LAT. J Exp Med. Jun 27 2016;213(7):1185-99. doi:10.1084/jem.20151110
68. Rowe JH, Delmonte OM, Keles S, et al. Patients with CD3G mutations reveal a role for human CD3gamma in T(reg) diversity and suppressive function. Blood. May 24 2018;131(21):2335-2344. doi:10.1182/blood-2018-02-835561
69. Sommers CL, Lee J, Steiner KL, et al. Mutation of the phospholipase C-gamma1-binding site of LAT affects both positive and negative thymocyte selection. J Exp Med. Apr 4 2005;201(7):1125-34. doi:10.1084/jem.20041869
70. Lee K, Park J, Tanno H, Georgiou G, Diamond B, Kim SJ. Peripheral T cell activation, not thymic selection, expands the T follicular helper repertoire in a lupus-prone murine model. Proc Natl Acad Sci U S A. Nov 28 2023;120(48):e2309780120. doi:10.1073/pnas.2309780120
71. Adams S, Zordan T, Sainis K, Datta S. T cell receptor V beta genes expressed by IgG anti-DNA autoantibody-inducing T cells in lupus nephritis: forbidden receptors and double-negative T cells. Eur J Immunol. Jul 1990;20(7):1435-43. doi:10.1002/eji.1830200705
72. Kim SJ, Caton M, Wang C, et al. Increased IL-12 inhibits B cells' differentiation to germinal center cells and promotes differentiation to short-lived plasmablasts. J Exp Med. Sep 29 2008;205(10): 2437-48. doi:10.1084/jem.20070731
73. Hayashi Y, Hamano H, Haneji N, Ishimaru N, Yanagi K. Biased T cell receptor V beta gene usage during specific stages of the development of autoimmune sialadenitis in the MRL/lpr mouse model of Sjogren's syndrome. Arthritis Rheum. Aug 1995;38(8):1077-84. doi:10.1002/art.1780380809
74. Moore E, Huang MW, Jain S, Chalmers SA, Macian F, Putterman C. The T Cell Receptor Repertoire in Neuropsychiatric Systemic Lupus Erythematosus. Front Immunol. 2020;11:1476. doi:10.3389/fimmu.2020.01476
75. Okamoto A, Fujio K, Tsuno NH, Takahashi K, Yamamoto K. Kidney-infiltrating CD4+ T-cell clones promote nephritis in lupus-prone mice. Kidney Int. Nov 2012;82(9):969-79. doi:10.1038/ki.2012.242
76. Wither J, Vukusic B. Autoimmunity develops in lupus-prone NZB mice despite normal T cell tolerance. J Immunol. Nov 1 1998;161(9):4555-62.
77. Rosenberger S, Undeutsch R, Akbarzadeh R, et al. Regulatory T cells inhibit autoantigen-specific CD4(+) T cell responses in lupus-prone NZB/W F1 mice. Front Immunol. 2023;14:1254176. doi:10.3389/fimmu.2023.1254176
78. Kim SJ, Schatzle S, Ahmed SS, et al. Increased cathepsin S in Prdm1(-/-) dendritic cells alters the T(FH) cell repertoire and contributes to lupus. Nat Immunol. Sep 2017;18(9):1016-1024. doi:10.1038/ni.3793
79. Akama-Garren EH, van den Broek T, Simoni L, Castrillon C, van der Poel CE, Carroll MC. Follicular T cells are clonally and transcriptionally distinct in B cell-driven mouse autoimmune disease. Nat Commun. Nov 18 2021;12(1):6687. doi:10.1038/s41467-021-27035-8
80. Arstila TP, Casrouge A, Baron V, Even J, Kanellopoulos J, Kourilsky P. A direct estimate of the human alphabeta T cell receptor diversity. Science. Oct 29 1999;286(5441):958-61. doi:10.1126/science.286.5441.958
81. Zarnitsyna VI, Evavold BD, Schoettle LN, Blattman JN, Antia R. Estimating the diversity, completeness, and cross-reactivity of the T cell repertoire. Front Immunol. Dec 26 2013;4:485. doi:10.3389/fimmu.2013.00485
82. Thapa DR, Tonikian R, Sun C, et al. Longitudinal analysis of peripheral blood T cell receptor diversity in patients with systemic lupus erythematosus by next-generation sequencing. Arthritis Res Ther. May 23 2015;17(1):132. doi:10.1186/s13075-015-0655-9
83. Liu X, Zhang W, Zhao M, et al. T cell receptor beta repertoires as novel diagnostic markers for systemic lupus erythematosus and rheumatoid arthritis. Ann Rheum Dis. Aug 2019;78(8):1070-1078. doi:10.1136/annrheumdis-2019-215442
84. Hou X, Wei W, Zhang J, et al. Characterisation of T and B cell receptor repertoire in patients with systemic lupus erythematosus. Clin Exp Rheumatol. Nov 2023;41(11):2216-2223. doi:10.55563/clinexprheumatol/1rjr4s
85. Wu Y, Weng C, Zhou Y, et al. A comprehensive exploration of the heterogeneity of immune cells in Han and Zang systemic lupus erythematosus patients via single-cell RNA sequencing. Genomics. Jan 2024;116(1):110770. doi:10.1016/j.ygeno.2023.110770