T Cell Repertoire in Lupus: Autoreactive T Cells in Central and Peripheral Selection

Main Article Content

Sun Jung Kim Betty Diamond

Abstract

Systemic lupus erythematosus (SLE) is an immune disorder characterized by the presence of T and B cells which drive a pathogenic autoimmune response. Autoreactive T effector cells naturally arise during the process of development in the thymus, but most are removed by several self-tolerance mechanisms. Self-antigen recognizing T cells emigrating from the thymus are normally prevented from causing cellular or tissue damage by peripheral tolerance mechanisms. While we understand much about how self-antigens are presented to T cells and the mechanisms to remove those T cells or convert them into regulatory T cells in thymus and peripheral lymphoid organs, we understand much less about the derivation of potentially pathogenic self-reactive T cells in autoimmune disease. It is not clear whether individuals with autoreactive T cell activation have an altered T cell receptor repertoire of naïve T cells that have matured to immunocompetence as effector cells or whether the pathogenic process involves altered activation of immunocompetent T cells in the periphery. There is increasing evidence that the autoantibodies that characterize SLE result from an interaction of B cells with self-reactive T cells. Here we summarize the evidence for autoreactive T cells in both lupus mouse models and in patients with SLE and discuss the evidence for either altered T cell selection or altered T cell activation in SLE, which has implications for both pathogenesis and treatment

Article Details

How to Cite
KIM, Sun Jung; DIAMOND, Betty. T Cell Repertoire in Lupus: Autoreactive T Cells in Central and Peripheral Selection. Medical Research Archives, [S.l.], v. 12, n. 8, aug. 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/5637>. Date accessed: 06 sep. 2024. doi: https://doi.org/10.18103/mra.v12i8.5637.
Section
Research Articles

References

1. Roth DB. V(D)J Recombination: Mechanism, Errors, and Fidelity. Microbiol Spectr. Dec 2014;2(6)doi:10.1128/microbiolspec.MDNA3-0041-2014
2. Rudolph MG, Stanfield RL, Wilson IA. How TCRs bind MHCs, peptides, and coreceptors. Annu Rev Immunol. 2006;24:419-66. doi:10.1146/annurev.immunol.23.021704.115658
3. Suarez-Fueyo A, Bradley SJ, Tsokos GC. T cells in Systemic Lupus Erythematosus. Curr Opin Immunol. Dec 2016;43:32-38. doi:10.1016/j.coi.2016.09.001
4. Li H, Boulougoura A, Endo Y, Tsokos GC. Abnormalities of T cells in systemic lupus erythematosus: new insights in pathogenesis and therapeutic strategies. J Autoimmun. Oct 2022;132:102870. doi:10.1016/j.jaut.2022.102870
5. Malkiel S, Jeganathan V, Wolfson S, et al. Checkpoints for Autoreactive B Cells in the Peripheral Blood of Lupus Patients Assessed by Flow Cytometry. Arthritis Rheumatol. Sep 2016;68(9):2210-20. doi:10.1002/art.39710
6. Crow MK, DelGiudice-Asch G, Zehetbauer JB, et al. Autoantigen-specific T cell proliferation induced by the ribosomal P2 protein in patients with systemic lupus erythematosus. J Clin Invest. Jul 1994;94(1):345-52. doi:10.1172/JCI117328
7. Klein L, Hinterberger M, Wirnsberger G, Kyewski B. Antigen presentation in the thymus for positive selection and central tolerance induction. Nat Rev Immunol. Dec 2009;9(12):833-44. doi:10.1038/nri2669
8. Kyewski B, Klein L. A central role for central tolerance. Annu Rev Immunol. 2006;24:571-606. doi:10.1146/annurev.immunol.23.021704.115601
9. Lee HM, Bautista JL, Scott-Browne J, Mohan JF, Hsieh CS. A broad range of self-reactivity drives thymic regulatory T cell selection to limit responses to self. Immunity. Sep 21 2012;37(3):475-86. doi:10.1016/j.immuni.2012.07.009
10. Nedjic J, Aichinger M, Emmerich J, Mizushima N, Klein L. Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature. Sep 18 2008;455(7211):396-400. doi:10.1038/nature07208
11. Florea BI, Verdoes M, Li N, et al. Activity-based profiling reveals reactivity of the murine thymoproteasome-specific subunit beta5t. Chem Biol. Aug 27 2010;17(8):795-801. doi:10.1016/j.chembiol.2010.05.027
12. Nakagawa T, Roth W, Wong P, et al. Cathepsin L: critical role in Ii degradation and CD4 T cell selection in the thymus. Science. Apr 17 1998;280(5362):450-3. doi:10.1126/science.280.5362.450
13. Gommeaux J, Gregoire C, Nguessan P, et al. Thymus-specific serine protease regulates positive selection of a subset of CD4+ thymocytes. Eur J Immunol. Apr 2009;39(4):956-64. doi:10.1002/eji.200839175
14. McCaughtry TM, Baldwin TA, Wilken MS, Hogquist KA. Clonal deletion of thymocytes can occur in the cortex with no involvement of the medulla. J Exp Med. Oct 27 2008;205(11):2575-84. doi:10.1084/jem.20080866
15. Melichar HJ, Ross JO, Herzmark P, Hogquist KA, Robey EA. Distinct temporal patterns of T cell receptor signaling during positive versus negative selection in situ. Sci Signal. Oct 15 2013;6(297):ra92. doi:10.1126/scisignal.2004400
16. Takaba H, Morishita Y, Tomofuji Y, et al. Fezf2 Orchestrates a Thymic Program of Self-Antigen Expression for Immune Tolerance. Cell. Nov 5 2015;163(4):975-87. doi:10.1016/j.cell.2015.10.013
17. Hubert FX, Kinkel SA, Davey GM, et al. Aire regulates the transfer of antigen from mTECs to dendritic cells for induction of thymic tolerance. Blood. Sep 1 2011;118(9):2462-72. doi:10.1182/blood-2010-06-286393
18. Yu W, Jiang N, Ebert PJ, et al. Clonal Deletion Prunes but Does Not Eliminate Self-Specific alphabeta CD8(+) T Lymphocytes. Immunity. May 19 2015;42(5):929-41. doi:10.1016/j.immuni.2015.05.001
19. La Gruta NL, Rothwell WT, Cukalac T, et al. Primary CTL response magnitude in mice is determined by the extent of naive T cell recruitment and subsequent clonal expansion. J Clin Invest. Jun 2010;120(6):1885-94. doi:10.1172/JCI41538
20. La Gruta NL, Thomas PG, Webb AI, et al. Epitope-specific TCRbeta repertoire diversity imparts no functional advantage on the CD8+ T cell response to cognate viral peptides. Proc Natl Acad Sci U S A. Feb 12 2008;105(6):2034-9. doi:10.1073/pnas.0711682102
21. Gascoigne NR, Rybakin V, Acuto O, Brzostek J. TCR Signal Strength and T Cell Development. Annu Rev Cell Dev Biol. Oct 6 2016;32:327-348. doi:10.1146/annurev-cellbio-111315-125324
22. Zikherman J, Au-Yeung B. The role of T cell receptor signaling thresholds in guiding T cell fate decisions. Curr Opin Immunol. Apr 2015;33:43-8. doi:10.1016/j.coi.2015.01.012
23. Fucikova J, Palova-Jelinkova L, Bartunkova J, Spisek R. Induction of Tolerance and Immunity by Dendritic Cells: Mechanisms and Clinical Applications. Front Immunol. 2019;10:2393. doi:10.3389/fimmu.2019.02393
24. Laffont S, Siddiqui KR, Powrie F. Intestinal inflammation abrogates the tolerogenic properties of MLN CD103+ dendritic cells. Eur J Immunol. Jul 2010;40(7):1877-83. doi:10.1002/eji.200939957
25. Bourges D, Ross EM, Allen S, et al. Transient systemic inflammation does not alter the induction of tolerance to gastric autoantigens by migratory dendritic cells. J Immunol. Jun 1 2014;192(11):5023-30. doi:10.4049/jimmunol.1303429
26. Lee YK, Menezes JS, Umesaki Y, Mazmanian SK. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A. Mar 15 2011;108 Suppl 1(Suppl 1):4615-22. doi:10.1073/pnas.1000082107
27. Jubair WK, Hendrickson JD, Severs EL, et al. Modulation of Inflammatory Arthritis in Mice by Gut Microbiota Through Mucosal Inflammation and Autoantibody Generation. Arthritis Rheumatol. Aug 2018;70(8):1220-1233. doi:10.1002/art.40490
28. Zhang X, Zhang D, Jia H, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment. Nat Med. Aug 2015;21(8):895-905. doi:10.1038/nm.3914
29. Horai R, Zarate-Blades CR, Dillenburg-Pilla P, et al. Microbiota-Dependent Activation of an Autoreactive T Cell Receptor Provokes Autoimmunity in an Immunologically Privileged Site. Immunity. Aug 18 2015;43(2):343-53. doi:10.1016/j.immuni.2015.07.014
30. Lopez P, de Paz B, Rodriguez-Carrio J, et al. Th17 responses and natural IgM antibodies are related to gut microbiota composition in systemic lupus erythematosus patients. Sci Rep. Apr 5 2016;6:24072. doi:10.1038/srep24072
31. Sprouse ML, Bates NA, Felix KM, Wu HJ. Impact of gut microbiota on gut-distal autoimmunity: a focus on T cells. Immunology. Apr 2019;156(4):305-318. doi:10.1111/imm.13037
32. Yang W, Yu T, Cong Y. CD4(+) T cell metabolism, gut microbiota, and autoimmune diseases: implication in precision medicine of autoimmune diseases. Precis Clin Med. Sep 2022;5(3):pbac018. doi:10.1093/pcmedi/pbac018
33. Olson JK, Eagar TN, Miller SD. Functional activation of myelin-specific T cells by virus-induced molecular mimicry. J Immunol. Sep 1 2002;169(5):2719-26. doi:10.4049/jimmunol.169.5.2719
34. Kaliyaperumal A, Mohan C, Wu W, Datta SK. Nucleosomal peptide epitopes for nephritis-inducing T helper cells of murine lupus. J Exp Med. Jun 1 1996;183(6):2459-69. doi:10.1084/jem.183.6.2459
35. Mohan C, Adams S, Stanik V, Datta SK. Nucleosome: a major immunogen for pathogenic autoantibody-inducing T cells of lupus. J Exp Med. May 1 1993;177(5):1367-81. doi:10.1084/jem.177.5.1367
36. Lu L, Kaliyaperumal A, Boumpas DT, Datta SK. Major peptide autoepitopes for nucleosome-specific T cells of human lupus. J Clin Invest. Aug 1999;104(3):345-55. doi:10.1172/JCI6801
37. van Beers J, Schreurs MWJ. Anti-Sm antibodies in the classification criteria of systemic lupus erythematosus. J Transl Autoimmun. 2022;5:100155. doi:10.1016/j.jtauto.2022.100155
38. Hoch SO, Eisenberg RA, Sharp GC. Diverse antibody recognition patterns of the multiple Sm-D antigen polypeptides. Clin Immunol. Aug 1999;92(2):203-8. doi:10.1006/clim.1999.4745
39. Riemekasten G, Langnickel D, Enghard P, et al. Intravenous injection of a D1 protein of the Smith proteins postpones murine lupus and induces type 1 regulatory T cells. J Immunol. Nov 1 2004;173(9):5835-42. doi:10.4049/jimmunol.173.9.5835
40. Monneaux F, Lozano JM, Patarroyo ME, Briand JP, Muller S. T cell recognition and therapeutic effect of a phosphorylated synthetic peptide of the 70K snRNP protein administered in MR/lpr mice. Eur J Immunol. Feb 2003;33(2):287-96. doi:10.1002/immu.200310002
41. Monneaux F, Muller S. Peptide-based immunotherapy of systemic lupus erythematosus. Autoimmun Rev. Jan 2004;3(1):16-24.
doi:10.1016/S1568-9972(03)00061-2
42. Riemekasten G, Weiss C, Schneider S, et al. T cell reactivity against the SmD1(83-119) C terminal peptide in patients with systemic lupus erythematosus. Ann Rheum Dis. Sep 2002;61(9):779-85. doi:10.1136/ard.61.9.779
43. Riemekasten G, Langnickel D, Ebling FM, et al. Identification and characterization of SmD183-119-reactive T cells that provide T cell help for pathogenic anti-double-stranded DNA antibodies. Arthritis Rheum. Feb 2003;48(2):475-85. doi:10.1002/art.10762
44. Kattah NH, Newell EW, Jarrell JA, et al. Tetramers reveal IL-17-secreting CD4+ T cells that are specific for U1-70 in lupus and mixed connective tissue disease. Proc Natl Acad Sci U S A. Mar 10 2015;112(10):3044-9. doi:10.1073/pnas.1424796112
45. Geiger R, Duhen T, Lanzavecchia A, Sallusto F. Human naive and memory CD4+ T cell repertoires specific for naturally processed antigens analyzed using libraries of amplified T cells. J Exp Med. Jul 6 2009;206(7):1525-34. doi:10.1084/jem.20090504
46. Abdirama D, Tesch S, Griessbach AS, et al. Nuclear antigen-reactive CD4(+) T cells expand in active systemic lupus erythematosus, produce effector cytokines, and invade the kidneys. Kidney Int. Jan 2021;99(1):238-246. doi:10.1016/j.kint.2020.05.051
47. Tesch S, Abdirama D, Griessbach AS, et al. Identification and characterization of antigen-specific CD4(+) T cells targeting renally expressed antigens in human lupus nephritis with two independent methods. Sci Rep. Dec 4 2020;10(1):21312. doi:10.1038/s41598-020-78223-3
48. Michaels MA, Kang HK, Kaliyaperumal A, Satyaraj E, Shi Y, Datta SK. A defect in deletion of nucleosome-specific autoimmune T cells in lupus-prone thymus: role of thymic dendritic cells. J Immunol. Nov 1 2005;175(9):5857-65. doi:10.4049/jimmunol.175.9.5857
49. Desai-Mehta A, Mao C, Rajagopalan S, Robinson T, Datta SK. Structure and specificity of T cell receptors expressed by potentially pathogenic anti-DNA autoantibody-inducing T cells in human lupus. J Clin Invest. Feb 1995;95(2):531-41. doi:10.1172/JCI117695
50. Greidinger EL, Gazitt T, Jaimes KF, Hoffman RW. Human T cell clones specific for heterogeneous nuclear ribonucleoprotein A2 autoantigen from connective tissue disease patients assist in autoantibody production. Arthritis Rheum. Jul 2004;50(7):2216-22. doi:10.1002/art.20287
51. Wildin RS, Ramsdell F, Peake J, et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet. Jan 2001;27(1):18-20. doi:10.1038/83707
52. Haribhai D, Williams JB, Jia S, et al. A requisite role for induced regulatory T cells in tolerance based on expanding antigen receptor diversity. Immunity. Jul 22 2011;35(1):109-22. doi:10.1016/j.immuni.2011.03.029
53. Josefowicz SZ, Niec RE, Kim HY, et al. Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature. Feb 8 2012;482(7385):395-9. doi:10.1038/nature10772
54. Jordan MS, Boesteanu A, Reed AJ, et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol. Apr 2001;2(4):301-6. doi:10.1038/86302
55. Moran AE, Holzapfel KL, Xing Y, et al. T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. J Exp Med. Jun 6 2011;208(6):1279-89. doi:10.1084/jem.20110308
56. Apostolou I, Sarukhan A, Klein L, von Boehmer H. Origin of regulatory T cells with known specificity for antigen. Nat Immunol. Aug 2002;3(8):756-63. doi:10.1038/ni816
57. Kieback E, Hilgenberg E, Stervbo U, et al. Thymus-Derived Regulatory T Cells Are Positively Selected on Natural Self-Antigen through Cognate Interactions of High Functional Avidity. Immunity. May 17 2016;44(5):1114-26. doi:10.1016/j.immuni.2016.04.018
58. Feng Y, van der Veeken J, Shugay M, et al. A mechanism for expansion of regulatory T-cell repertoire and its role in self-tolerance. Nature. Dec 3 2015;528(7580):132-136. doi:10.1038/nature16141
59. Wyss L, Stadinski BD, King CG, et al. Affinity for self antigen selects Treg cells with distinct functional properties. Nat Immunol. Sep 2016;17(9):1093-101. doi:10.1038/ni.3522
60. Eggenhuizen PJ, Cheong RMY, Lo C, et al. Smith-specific regulatory T cells halt the progression of lupus nephritis. Nat Commun. Feb 6 2024;15(1):899. doi:10.1038/s41467-024-45056-x
61. Nagamine K, Peterson P, Scott HS, et al. Positional cloning of the APECED gene. Nat Genet. Dec 1997;17(4):393-8. doi:10.1038/ng1297-393
62. Ramsey C, Winqvist O, Puhakka L, et al. Aire deficient mice develop multiple features of APECED phenotype and show altered immune response. Hum Mol Genet. Feb 15 2002;11(4):397-409. doi:10.1093/hmg/11.4.397
63. Tucker E, O'Donnell K, Fuchsberger M, et al. A novel mutation in the Nfkb2 gene generates an NF-kappa B2 "super repressor". J Immunol. Dec 1 2007;179(11):7514-22. doi:10.4049/jimmunol.179.11.7514
64. Zhang B, Wang Z, Ding J, Peterson P, Gunning WT, Ding HF. NF-kappaB2 is required for the control of autoimmunity by regulating the development of medullary thymic epithelial cells. J Biol Chem. Dec 15 2006;281(50):38617-24. doi:10.1074/jbc.M606705200
65. Zhu M, Chin RK, Christiansen PA, et al. NF-kappaB2 is required for the establishment of central tolerance through an Aire-dependent pathway. J Clin Invest. Nov 2006;116(11):2964-71. doi:10.1172/JCI28326
66. Hauck F, Randriamampita C, Martin E, et al. Primary T-cell immunodeficiency with immunodysregulation caused by autosomal recessive LCK deficiency. J Allergy Clin Immunol. Nov 2012;130(5):1144-1152 e11. doi:10.1016/j.jaci.2012.07.029
67. Keller B, Zaidman I, Yousefi OS, et al. Early onset combined immunodeficiency and autoimmunity in patients with loss-of-function mutation in LAT. J Exp Med. Jun 27 2016;213(7):1185-99. doi:10.1084/jem.20151110
68. Rowe JH, Delmonte OM, Keles S, et al. Patients with CD3G mutations reveal a role for human CD3gamma in T(reg) diversity and suppressive function. Blood. May 24 2018;131(21):2335-2344. doi:10.1182/blood-2018-02-835561
69. Sommers CL, Lee J, Steiner KL, et al. Mutation of the phospholipase C-gamma1-binding site of LAT affects both positive and negative thymocyte selection. J Exp Med. Apr 4 2005;201(7):1125-34. doi:10.1084/jem.20041869
70. Lee K, Park J, Tanno H, Georgiou G, Diamond B, Kim SJ. Peripheral T cell activation, not thymic selection, expands the T follicular helper repertoire in a lupus-prone murine model. Proc Natl Acad Sci U S A. Nov 28 2023;120(48):e2309780120. doi:10.1073/pnas.2309780120
71. Adams S, Zordan T, Sainis K, Datta S. T cell receptor V beta genes expressed by IgG anti-DNA autoantibody-inducing T cells in lupus nephritis: forbidden receptors and double-negative T cells. Eur J Immunol. Jul 1990;20(7):1435-43. doi:10.1002/eji.1830200705
72. Kim SJ, Caton M, Wang C, et al. Increased IL-12 inhibits B cells' differentiation to germinal center cells and promotes differentiation to short-lived plasmablasts. J Exp Med. Sep 29 2008;205(10): 2437-48. doi:10.1084/jem.20070731
73. Hayashi Y, Hamano H, Haneji N, Ishimaru N, Yanagi K. Biased T cell receptor V beta gene usage during specific stages of the development of autoimmune sialadenitis in the MRL/lpr mouse model of Sjogren's syndrome. Arthritis Rheum. Aug 1995;38(8):1077-84. doi:10.1002/art.1780380809
74. Moore E, Huang MW, Jain S, Chalmers SA, Macian F, Putterman C. The T Cell Receptor Repertoire in Neuropsychiatric Systemic Lupus Erythematosus. Front Immunol. 2020;11:1476. doi:10.3389/fimmu.2020.01476
75. Okamoto A, Fujio K, Tsuno NH, Takahashi K, Yamamoto K. Kidney-infiltrating CD4+ T-cell clones promote nephritis in lupus-prone mice. Kidney Int. Nov 2012;82(9):969-79. doi:10.1038/ki.2012.242
76. Wither J, Vukusic B. Autoimmunity develops in lupus-prone NZB mice despite normal T cell tolerance. J Immunol. Nov 1 1998;161(9):4555-62.
77. Rosenberger S, Undeutsch R, Akbarzadeh R, et al. Regulatory T cells inhibit autoantigen-specific CD4(+) T cell responses in lupus-prone NZB/W F1 mice. Front Immunol. 2023;14:1254176. doi:10.3389/fimmu.2023.1254176
78. Kim SJ, Schatzle S, Ahmed SS, et al. Increased cathepsin S in Prdm1(-/-) dendritic cells alters the T(FH) cell repertoire and contributes to lupus. Nat Immunol. Sep 2017;18(9):1016-1024. doi:10.1038/ni.3793
79. Akama-Garren EH, van den Broek T, Simoni L, Castrillon C, van der Poel CE, Carroll MC. Follicular T cells are clonally and transcriptionally distinct in B cell-driven mouse autoimmune disease. Nat Commun. Nov 18 2021;12(1):6687. doi:10.1038/s41467-021-27035-8
80. Arstila TP, Casrouge A, Baron V, Even J, Kanellopoulos J, Kourilsky P. A direct estimate of the human alphabeta T cell receptor diversity. Science. Oct 29 1999;286(5441):958-61. doi:10.1126/science.286.5441.958
81. Zarnitsyna VI, Evavold BD, Schoettle LN, Blattman JN, Antia R. Estimating the diversity, completeness, and cross-reactivity of the T cell repertoire. Front Immunol. Dec 26 2013;4:485. doi:10.3389/fimmu.2013.00485
82. Thapa DR, Tonikian R, Sun C, et al. Longitudinal analysis of peripheral blood T cell receptor diversity in patients with systemic lupus erythematosus by next-generation sequencing. Arthritis Res Ther. May 23 2015;17(1):132. doi:10.1186/s13075-015-0655-9
83. Liu X, Zhang W, Zhao M, et al. T cell receptor beta repertoires as novel diagnostic markers for systemic lupus erythematosus and rheumatoid arthritis. Ann Rheum Dis. Aug 2019;78(8):1070-1078. doi:10.1136/annrheumdis-2019-215442
84. Hou X, Wei W, Zhang J, et al. Characterisation of T and B cell receptor repertoire in patients with systemic lupus erythematosus. Clin Exp Rheumatol. Nov 2023;41(11):2216-2223. doi:10.55563/clinexprheumatol/1rjr4s
85. Wu Y, Weng C, Zhou Y, et al. A comprehensive exploration of the heterogeneity of immune cells in Han and Zang systemic lupus erythematosus patients via single-cell RNA sequencing. Genomics. Jan 2024;116(1):110770. doi:10.1016/j.ygeno.2023.110770