Improved bioremediation of a highly soil impacted by waste motor oil, for safe food

Main Article Content

Juan Luis Ignacio-De la Cruz Izaney Rodríguez-Díaz Elizabeth Carrillo-Flores Elda María Beltrán-Peña Juan Manuel Sánchez-Yáñez

Abstract

The use of automobiles generates waste motor oil (WMO), whose inadequate disposal in agricultural soil is acute problem of loss of this natural resource that results in a drastic reduction in agricultural production. The soil bioremediation is complex and slow task when levels of pollution of 95,000 ppm, exceeds the maximum limit of 4,400 ppm, established by the Mexican standard. However, it is possible to reduce the recovery time of this soils, by the combined of process biostimulation and phytoremediation. Therefore, the objectives of this research were: i) biostimulation of a soil contaminated by 100,000 ppm of WMO, ii) phytoremediation by Phaseolus vulgaris with Methylobacterium symbioticum and Xanthobacter autotrophicus, plus a crude extract of carbon nanoparticles. The response variables were: a) initial and final concentration of WMO and b) P. vulgaris germination percentage, phenology and biomass at seedling stage. The results indicated that biostimulation of soil contaminated by 100,000 ppm of WMO using detergent, followed it of a crude extract of biodetergents and lipases that emulsified and hydrolyzed the insoluble aliphatic hydrocarbons. After a treatment with a crude extract of extracellular enzymes that degrade lignin and hydrolyzed the aromatic fraction of WMO, and the biostimulation with 50% mineral solution, for efficient mineralization of WMO to reduce pollution from 100,000 to 38,354 ppm in 75 days. Phytoremediation by P. vulgaris of remnant of WMO with M. symbioticum and X. autotrophicus, 45 days after sowing, decreased to 4,100, value lower than that maximum established and statistically different from 85,711 ppm of WMO used as negative control. In that sense this soil could be used for agriculture aims having no risk for producing safe food for humans and animals.

Keywords: biodetergents, biostimulation, bioremediation, extracellular enzymes, hydrocarbons, legumes, lipases, nanoparticles, soil

Article Details

How to Cite
IGNACIO-DE LA CRUZ, Juan Luis et al. Improved bioremediation of a highly soil impacted by waste motor oil, for safe food. Medical Research Archives, [S.l.], v. 12, n. 8, sep. 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/5655>. Date accessed: 07 jan. 2025. doi: https://doi.org/10.18103/mra.v12i8.5655.
Section
Research Articles

References

1. Prado MRV, Ramos FT, Weber OLDS, Müller CB. 2016. Organic carbon and total nitrogen in the densimetric fractions of organic matter under different soil management. Revista Caatinga, 29, 263-273.

2. Koshlaf E, Ball AS. 2017. Soil bioremediation approaches for petroleum hydrocarbon polluted environments. AIMS Microbiology, 3(1), 25.

3. LGEEPA 2008. Ley general del equilibrio ecológico y la protección al ambiente. Cámara de Diputados del H. Congreso de la Unión. Diario Oficial de la Federación.

4. Norma Oficial Mexicana NOM-138-SEMARNA T/SSA1-2012, Límites máximos permisibles de hidrocarburos en suelos y lineamientos para el muestreo en la caracterización y especificaciones para la remediación. DOF Secretaria de Gobernación. México.

5. Okoh E, Yelebe ZR, Oruabena B, Nelson ES, Indiamaowei OP. 2020. Clean-up of crude oil-contaminated soils: bioremediation option. International Journal of Environmental Science and Technology, 17(2), 1185-1198.

6. Konur O. 2021. Bioremediation of petroleum hydrocarbons in contaminated soils: A review of the research. Petrodiesel Fuels, 995-1013.

7. Baltierra-Trejo E, Silva-Espino E, Márquez-Benavides L, Sánchez-Yáñez JM. 2016. Inducción de la degradación de lignina de paja de trigo en aromaticos por Aspergillus spp y Penicillium chrysogenum. Journal of the Selva Andina Research Society, 7(1), 10-19.

8. Grossi CEM, Fantino E, Serral F, Zawoznik MS, Fernandez Do Porto DA, Ulloa RM. 2020. Methylobacterium sp. 2A is a plant growth-promoting rhizobacteria that has the potential to improve potato crop yield under adverse conditions. Frontiers in plant Science, 11, 505174.

9. El-Saadony MT, Saad AM, Soliman SM, Salem HM, Ahmed AI, Mahmood M, AbuQamar SF. 2022. Plant growth-promoting microorganisms as biocontrol agents of plant diseases: Mechanisms, challenges and future perspectives. Frontiers in Plant Science, 13, 923880.

10. Ruikar A, Pawar HS. 2022. Diversity and interaction of microbes in biodegradation. Microbial Community Studies in Industrial Wastewater Treatment, 185-213.

11. Cheng M, Zeng G, Huang D, Yang C, Lai C, Zhang C, Liu Y. 2017. Advantages and challenges of Tween 80 surfactant-enhanced technologies for the remediation of soils contaminated with hydrophobic organic compounds. Chemical Engineering Journal, 314, 98-113.

12. Nasr M. 2019. Environmental perspectives of plant-microbe nexus for soil and water remediation. Microbiome in Plant Health and Disease: Challenges and Opportunities, 403-419.

13. Ling H, Hou J, Du M, Zhang Y, Liu W, Christie P, Luo Y. 2023. Surfactant-enhanced bioremediation of petroleum-contaminated soil and microbial community response: A field study. Chemosphere, 322, 138225.

14. Chan-Quijano JG, Cach-Pérez MJ, Rodríguez-Robles U. 2020. Phytoremediation of soils contaminated by hydrocarbon. Shmaefuky BR. (Ed). Phytoremediation: In-situ Applications, 83-101.

15. Kochhar N, Shrivastava S, Ghosh A, Rawat VS, Sodhi KK, Kumar M. 2022. Perspectives on the microorganism of extreme environments and their applications. Current Research in Microbial Sciences, 3, 100134.

16. Madariaga-Navarrete A, Rodríguez-Pastrana BR, Villagómez-Ibarra JR, Acevedo-Sandoval OA, Perry G, Islas-Pelcastre M. 2017. Bioremediation model for atrazine contaminated agricultural soils using phytoremediation (using Phaseolus vulgaris L.) and a locally adapted microbial consortium. Journal of Environmental Science and Health, Part B, 52(6), 367-375.

17. Gouthami K, Mallikarjunaswamy AMM, Bhargava RN, Ferreira LFR, Rahdar A, Saratale GD, Mulla SI. 2023. Microbial Biodegradation and Biotransformation of Petroleum Hydrocarbons: Progress, Prospects, and Challenges. Kumar V, Bilal M, Romanholo Ferreira L, Iqbal HMN. (Ed). Genomics Approach to Bioremediation: Principles, Tools, and Emerging Technologies, 229-247.

18. Varjani S, Upasani VN, Pandey A. 2020. Bioremediation of oily sludge polluted soil employing a novel strain of Pseudomonas aeruginosa and phytotoxicity of petroleum hydrocarbons for seed germination. Science of the Total Environment, 737, 139766.

19. Dehnavi SM, Ebrahimipour G. 2024. Biostimulation of petroleum-contaminated soils with synthetic and natural sources of NPK fertilizer. Soil and Sediment Contamination: An International Journal, 33(4), 416-429.

20. Banet G, Turaani AK, Farber R, Armoza-Zvuloni R, Rotem N, Stavi I, Cahan R. 2021. The effects of biostimulation and bioaugmentation on crude oil biodegradation in two adjacent terrestrial oil spills of different age, in a hyper-arid region. Journal of Environmental Management, 286, 112248.

21. Fenibo EO., Ijoma GN., Selvarajan R., Chikere CB. 2019. Microbial surfactants: The next generation multifunctional biomolecules for applications in the petroleum industry and is associated environmental remediation. Microorganisms 7: (11): 581

22. Chersilp B, Sohsomboon N, Binmarn D, Pathom-aree W, Srinuanpan S. 2021. Palm oil decanter cake wastes as alternative nutrient sources and biomass support particles for production of fungal whole-cell lipase and application as low-cost biocatalyst for biodiesel production. Processes 9: 1356

23. Jacob EL, Mohan AP, Joseph V. 2022. Bioremediation of petroleum-polluted soil using biosurfactant producing bacteria, Pseudomonas sp. Journal of Scientific Research 66 (1).

24. Soumeya S, Allaoueddine B, Hocine AK. 2022. Biodegradation of used motor oil by Streptomyces ginkgonis KM-1-2, isolated from soil polluted by waste oils in the region of Azzaba (Skikda-Algeria). Journal of Biotechnology 349: 1-11

25. Asquith EA, Geary PA, Nolan AL, Evans CA. 2012. Comparative bioremediation of petroleum hydrocarbon-contaminated soil by biostimulation, bioaugmentation and surfactant addition, Journal Environmental Science Engineering. 1: 637–650.

26. Kumar A, Bisht B, Joshi A, Dhewa T. 2011. Review on bioremediation of polluted environment : A management tool. International Journal Environmental Science. 1: 1079–1093.

27. Science L, Sharma S. 2012. Bioremediation: Features, strategies and applications, Asian Journal Pharmaceutical Life Science. 2: 202–213.

28. Thapa B, Kumar AKC, Ghimire A. 2012. Review on bioremediation of petroleum hydrocarbon contaminants in soil, Kathmandu Univ. Journal Science Engineering Technology. 8: 164–170.

29. Basumatary B, Saikia R, Bordoloi S. 2012. Phytoremediation of crude oil contaminated soil using nut grass, Cyperus rotundus. Journal Environmental Biology. 33:891–896.

30. Asiabadi F, Mirbagheri P, Najafi F, Moatar P. 2014. Phytoremediation of petroleum-contaminated soils around Isfahan oil refinery (Iran) by sorghum and barley, Current World Environmental Journal. 9: 65–72. doi:10.12944/CWE.9.1.10.

31. Chuluun B, Shah SH, Rhee J. 2014. Bioaugmented phytoremediation : A strategy for reclamation of diesel oil-contaminated soils,. International Journal Agriculture Biology. 16: 624–628.