Endocrine disruptors: Effect on the intestinal microbiota as a cause of type 2 diabetes mellitus

Main Article Content

Pedro Sánchez Márquez

Abstract

With lifestyles changes, chronic non-communicable diseases are the new pandemic of this century. This includes diabetes, that even if it exists a polygenic genetic predisposition, the effect of epigenetics is more relevant. Among the epigenetic conditions are endocrine disruptors, to which human being have high exposure in daily life, these can damage multiple organs such as the intestinal microbiota, generating toxicity and predisposing to development of the disease. The goal of the article is to discuss the mechanisms of endocrine disruptors that can affect our health, particularly in terms of the development of type 2 diabetes mellitus due to intestinal dysbiosis. Taking in to account that we are in permanent contact to these, directly or indirectly, substances such as pesticides, plastics, medications, sweeteners, among others can be taken as endocrine disruptors.

Article Details

How to Cite
MÁRQUEZ, Pedro Sánchez. Endocrine disruptors: Effect on the intestinal microbiota as a cause of type 2 diabetes mellitus. Medical Research Archives, [S.l.], v. 12, n. 8, aug. 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/5661>. Date accessed: 07 jan. 2025. doi: https://doi.org/10.18103/mra.v12i8.5661.
Section
Research Articles

References

1. Smith K, Deutsch AJ, McGrail C, Kim H, Hsu S, Huerta-Chagoya A, et al. Multi-ancestry polygenic mechanisms of type 2 diabetes. Nat Med. 2024 Mar;
2. Niu H, Liu S, Jiang Y, Hu Y, Li Y, He L, et al. Are Microplastics Toxic? A Review from Eco-Toxicity to Effects on the Gut Microbiota. Metabolites. 2023 Jun;13(6).
3. Bergman Å, Heindel JJ, Kasten T, Kidd KA, Jobling S, Neira M, et al. The impact of endocrine disruption: A consensus statement on the state of the science. Environmental Health Perspectives. 2013;
4. Beck R, Styblo M, Sethupathy P. Arsenic Exposure and Type 2 Diabetes: MicroRNAs as Mechanistic Links? Curr Diab Rep. 2017 Mar;17(3):18.
5. Grau-Pérez M, Kuo CC, Spratlen M, Thayer KA, Mendez MA, Hamman RF, et al. The association of arsenic exposure and metabolism with type 1 and type 2 diabetes in youth: The search case-control study. Diabetes Care. 2017;
6. Tong X, Mohapatra S, Zhang J, Tran NH, You L, He Y, et al. Source, fate, transport and modeling of selected emerging contaminants in the aquatic environment: Current status and future perspectives. Water Res. 2022 Jun;217:118418.
7. Porta M, Gasull M, Puigdomènech E, Garí M, Bosch de Basea M, Guillén M, et al. Distribution of blood concentrations of persistent organic pollutants in a representative sample of the population of Catalonia. Environ Int. 2010 Oct;36(7):655–64.
8. Fisher BE. Most unwanted. Environ Health Perspect. 1999 Jan;107(1):A18-23.
9. Khalil WJ, Akeblersane M, Khan AS, Moin ASM, Butler AE. Environmental Pollution and the Risk of Developing Metabolic Disorders: Obesity and Diabetes. Int J Mol Sci. 2023 May;24(10).
10. Song Y, Chou EL, Baecker A, You NCY, Song Y, Sun Q, et al. Endocrine-disrupting chemicals, risk of type 2 diabetes, and diabetes-related metabolic traits: A systematic review and meta-analysis. JDiabetes. 2016;
11. Shi J, Wei D, Ma C, Geng J, Zhao M, Hou J, et al. Combined effects of organochlorine pesticides on type 2 diabetes mellitus: Insights from endocrine disrupting effects of hormones. Environ Pollut. 2024 Jan;341:122867.
12. Gang N, Van Allen K, Villeneuve PJ, MacDonald H, Bruin JE. Sex-specific Associations Between Type 2 Diabetes Incidence and Exposure to Dioxin and Dioxin-like Pollutants: A Meta-analysis. Front Toxicol. 2021;3:685840.
13. Aghighi F, Salami M. What we need to know about the germ-free animal models. AIMS Microbiol. 2024;10(1):107–47.
14. Moran-ramos S, Blanca EL. Gut Microbiota in Obesity and Metabolic Abnormalities: A Matter of Composition or Functionality? Arch Med Res. 2017;
15. Tain YL, Hsu CN. Nutritional Approaches Targeting Gut Microbiota in Oxidative-Stress-Associated Metabolic Syndrome: Focus on Early Life Programming. Nutrients. 2024 Feb;16(5).
16. Petakh P, Kamyshna I, Kamyshnyi A. Effects of metformin on the gut microbiota: A systematic review. Mol Metab. 2023 Nov;77:101805.
17. Zietek M, Szczuko M, Celewicz Z, Kordek A. Perinatal factors affecting the gut microbiota - are they preventable? Ginekol Pol. 2020;91(11):709–13.
18. Tu P, Chi L, Bodnar W, Zhang Z, Gao B, Bian X, et al. Gut Microbiome Toxicity: Connecting the Environment and Gut Microbiome-Associated Diseases. Toxics. 2020 Mar;8(1).
19. Liu N, Yan X, Lv B, Wu Y, Hu X, Zheng C, et al. A study on the association between gut microbiota, inflammation, and type 2 diabetes. Appl Microbiol Biotechnol. 2024 Feb;108(1):213.
20. Moreno-Cortés ML, Meza-Alvarado JE, García-Mena J, Hernández-Rodríguez A. Chronodisruption and Gut Microbiota: Triggering Glycemic Imbalance in People with Type 2 Diabetes. Nutrients. 2024 Feb;16(5).
21. Sastre M, Cimbalo A, Mañes J, Manyes L. Gut Microbiota and Nutrition: Strategies for the Prevention and Treatment of Type 2 Diabetes. J Med Food. 2024 Feb;27(2):97–109.
22. Wang Y, Wen L, Tang H, Qu J, Rao B. Probiotics and Prebiotics as Dietary Supplements for the Adjunctive Treatment of Type 2 Diabetes. Polish J Microbiol. 2023 Mar;72(1):3–9.
23. Gutiérrez-Salmerón M, Lucena SR, Chocarro-Calvo A, García-Martínez JM, Martín Orozco RM, García-Jiménez C. Remodeling of colorectal cancer cell signaling by microbiota and immunity in diabetes. Endocr Relat Cancer. 2021 May;28(6):R173–90.
24. Wicherska-Pawłowska K, Wróbel T, Rybka J. Toll-Like Receptors (TLRs), NOD-Like Receptors (NLRs), and RIG-I-Like Receptors (RLRs) in Innate Immunity. TLRs, NLRs, and RLRs Ligands as Immunotherapeutic Agents for Hematopoietic Diseases. Int J Mol Sci. 2021 Dec;22(24).
25. Fu Y, Lyu J, Wang S. The role of intestinal microbes on intestinal barrier function and host immunity from a metabolite perspective. Front Immunol. 2023;14:1277102.
26. Gupta SK, Vyavahare S, Duchesne Blanes IL, Berger F, Isales C, Fulzele S. Microbiota-derived tryptophan metabolism: Impacts on health, aging, and disease. Exp Gerontol. 2023 Nov;183:112319.
27. Sodum N, Mattila O, Sharma R, Kamakura R, Lehto VP, Walkowiak J, et al. Nutrient Combinations Sensed by L-Cell Receptors Potentiate GLP-1 Secretion. Int J Mol Sci. 2024 Jan;25(2).
28. Zhao Q, Chen Y, Huang W, Zhou H, Zhang W. Drug-microbiota interactions: an emerging priority for precision medicine. Signal Transduct Target Ther. 2023 Oct;8(1):386.
29. Ferrer M, Martins dos Santos VAP, Ott SJ, Moya A. Gut microbiota disturbance during antibiotic therapy: a multi-omic approach. Gut Microbes. 2014;5(1):64–70.
30. Vliex LMM, Penders J, Nauta A, Zoetendal EG, Blaak EE. The individual response to antibiotics and diet - insights into gut microbial resilience and host metabolism. Nat Rev Endocrinol. 2024 Mar;
31. Wang X, Tang Q, Hou H, Zhang W, Li M, Chen D, et al. Gut Microbiota in NSAID Enteropathy: New Insights From Inside. Front Cell Infect Microbiol. 2021;11:679396.
32. Lin MH, Wu WT, Chen YC, Lu CH, Su SC, Kuo FC, et al. Association between Non-Steroidal Anti-Inflammatory Drugs Use and the Risk of Type 2 Diabetes Mellitus: A Nationwide Retrospective Cohort Study. J Clin Med. 2022 Jun;11(11).
33. Porru S, Esplugues A, Llop S, Delgado-Saborit JM. The effects of heavy metal exposure on brain and gut microbiota: A systematic review of animal studies. Environ Pollut. 2024 Mar;348:123732.
34. Mansouri B, Rezaei A, Sharafi K, Azadi N, Pirsaheb M, Rezaei M, et al. Mixture effects of trace element levels on cardiovascular diseases and type 2 diabetes risk in adults using G-computation analysis. Sci Rep. 2024 Mar;14(1):5743.
35. Ali A, AlHussaini KI. Pesticides: Unintended Impact on the Hidden World of Gut Microbiota. Metabolites. 2024 Mar;14(3).
36. Velmurugan G, Ramprasath T, Gilles M, Swaminathan K, Ramasamy S. Gut Microbiota, Endocrine-Disrupting Chemicals, and the Diabetes Epidemic. Trends Endocrinol Metab. 2017 Aug;28(8):612–25.
37. Wang Sci Total Environment. 2024 Jul;932:172892.
38. Huang B, Zhang N, Wang J, Gao Y, Wu W, Jiang M, et al. Maternal Di-(2-ethylhexyl)-Phthalate exposure during pregnancy altered energy metabolism in immature offspring and caused hyperglycemia. Ecotoxicol Environ Saf. 2024 May;279:116494.
39. Tan Y, Guo Z, Yao H, Liu H, Fu Y, Luo Y, et al. Association of phthalate exposure with type 2 diabetes and the mediating effect of oxidative stress: A case-control and computational toxicology study. Ecotoxicol Environ Saf. 2024 Apr;274:116216.
40. Duan Y, Sun H, Han L, Chen L. Association between phthalate exposure and glycosylated hemoglobin, fasting glucose, and type 2 diabetes mellitus: A case-control study in China. Sci Total Environment. 2019 Jun;670:41–9.
41. Kumar D, Biswas JK, Mulla SI, Singh R, Shukla R, Ahanger MA, et al. Micro and nanoplastics pollution: Sources, distribution, uptake in plants, toxicological effects, and innovative remediation strategies for environmental sustainability. Plant Physiol Biochem PPB. 2024 Jun;213:108795.
42. Uaciquete D, Sawada A, Chiba T, Pythias EM, Iguchi T, Horie Y. Occurrence and ecological risk assessment of 16 plasticizers in the rivers and estuaries in Japan. Chemosphere. 2024 Jun;362:142605.
43. Kaseke T, Lujic T, Cirkovic Velickovic T. Nano- and Microplastics Migration from Plastic Food Packaging into Dairy Products: Impact on Nutrient Digestion, Absorption, and Metabolism. Foods (Basel, Switzerland). 2023 Aug;12(16).
44. Zhang R, Feng Y, Nie P, Wang W, Wu H, Wan X, et al. Polystyrene microplastics disturb maternal glucose homeostasis and induce adverse pregnancy outcomes. Ecotoxicol Environ Saf. 2024 Jul;279:116492.
45. Wang Y, Xu K, Gao X, Wei Z, Han Q, Wang S, et al. Polystyrene nanoplastics with different functional groups and charges have different impacts on type 2 diabetes. Part Fiber Toxicol. 2024 Apr;21(1):21.
46. Su QL, Wu J, Tan SW, Guo XY, Zou DZ, Kang K. The impact of microplastics polystyrene on the microscopic structure of mouse intestine, tight junction genes and gut microbiota. PLoS One. 2024;19(6):e0304686.
47. Jing L, Zhang Y, Zhang Q, Zhao H. Polystyrene microplastics disrupted physical barriers, microbiota composition and immune responses in the cecum of developmental Japanese quails. J Environ Sci (China). 2024 Oct;144:225–35.
48. Gibbons C, Beaulieu K, Almiron-Roig E, Navas-Carretero S, Martínez JA, O'Hara B, et al. Acute and two-week effects of neotame, stevia rebaudioside M and sucrose-sweetened biscuits on postprandial appetite and endocrine response in adults with overweight/obesity-a randomized crossover trial from the SWEET consortium. EBioMedicine. 2024 Apr;102:105005.
49. Drasar BS, Renwick AG, Williams RT. The role of the gut flora in the metabolism of cyclamate. Biochem J. 1972 Oct;129(4):881–90.
50. Suez J, Korem T, Zeevi D, Zilberman-Schapira G, Thaiss CA, Maza O, et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature. 2014 Oct;514(7521):181–6.
51. Greenhill C. Gut microbiota: not so sweet--artificial sweeteners can cause glucose intolerance by affecting the gut microbiota. Nat Rev Endocrinol. 2014 Nov;10(11):637.
52. Shil A, Ladeira Faria LM, Walker CA, Chichger H. The artificial sweetener neotame negatively regulates the intestinal epithelium directly through T1R3-signaling and indirectly through pathogenic changes to model gut bacteria. Front Nutr. 2024;11:1366409.