Serum levels of soluble receptor activator of NF-κβ ligand are under dual, immune and neural effects in postmenopausal women

Main Article Content

Ildikó Molnár, Ph.D Zoltán Nagy, Ph.D, Immunoendocrinology, EndoMed

Abstract

Background: The receptor activator of NF-κβ (RANK)/RANK ligand/ osteoprotegerin system is essential for osteoclast maturation and activation to induce bone loss, which plays a role in postmenopausal osteoporosis. Estrogen deficiency in postmenopausal women is associated with T-cell mediated inflammation with increased proinflammatory cytokines, such as IL-17A, IL-1, IL-6 and tumor necrosis factor alpha. Bone repair and remodeling processes highlight the role of nerve growth factor β (NGFβ), whose non-neural production is associated with T-cell mediated inflammation.


Aims: To investigate the involvement of IL-17A and NGFβ cytokines in the elevation of serum soluble RANK ligand levels in postmenopausal and control women.


Methods: Fifty-two postmenopausal and 37 control women were studied for age, body mass index, homeostasis model assessment (HOMA) index, serum levels of IL-17A, NGFβ, soluble RANK ligand (measured by indirect enzyme-linked immunosorbent assay) and estrogen  (measured by chemiluminescence assay). Two- and three-way ANOVA (expressed as median with Q1 to Q3) and linear regression analysis were used to evaluate the strength of relationship between soluble RANK ligand levels as dependent and age, serum IL-17A and NGFβ levels as independent variables.


Results: A significant difference in age, serum NGFβ and estrogen levels could be demonstrated between postmenopausal and control women (with borderline significance in HOMA indices). The differences in serum IL-17A and NGFβ levels were relevant between categories for body mass index in postmenopausal and control women, but in soluble RANK ligand levels only in postmenopausal women. The increase in soluble RANK ligand levels was greater in elevated IL-17A [101(291.75 to 39.92) vs. 45.24(95.56 to 25.34) ng/ml, p<0.015] and elevated NGFβ [222.2(142.75 to 1086.87) vs. 52.44(25.87 to 76.88) ng/ml, p<0.0001] categories compared to low categories in postmenopause, but not in controls. Both elevated IL-17A and NGFβ levels resulted in the greatest increase in serum levels of soluble RANK ligand [252.27(159.9 to 1099.64) vs. 41.4(35.91 to 59.94) ng/ml, p<0.0001] compared to elevated IL-17A levels alone.


Conclusion: Both IL-17A and NGFβ cytokines were involved in the increased serum levels of soluble RANK ligand in postmenopausal women. Their joint involvement in postmenopausal osteoporosis highlighted that neurogenic inflammation may play a critical role in bone loss via greater elevated soluble RANK ligand levels induced by concomitant elevated IL-17A and NGFβ levels.

Article Details

How to Cite
MOLNÁR, Ildikó; NAGY, Zoltán. Serum levels of soluble receptor activator of NF-κβ ligand are under dual, immune and neural effects in postmenopausal women. Medical Research Archives, [S.l.], v. 12, n. 8, aug. 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/5664>. Date accessed: 07 jan. 2025. doi: https://doi.org/10.18103/mra.v12i8.5664.
Section
Research Articles

References

1. Raisz LG. Pathogenesis of osteoporosis: concepts, conflicts, and prospects. J Clin Invest 2003; 115(12):3318-3325. doi:10.1172/JC127071.

2. Pfeilschifter J, Kköditz R, Pfohl M, Schatz H. Changes in proinflammatory cytokine activity after menopause. Endocrine Rev 2002; 23(1):90-119. doi:10.1210/edrv.23.1.0456

3. Faienza MF, Ventura A, Marzano F, Cavallo L. Postmenopausal osteoporosis: The role of immune system cells. Clin Develop Immunol 2013; 2013:575936. doi:10.1155/2013/575936.

4. Boyce BF, Xing L. Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther 2007; 9 (Suppl 1): S1-S7. doi:10.1186/ar2165.

5. Ono T, Hayashi M, Sasaki F, Nakashima T. RANKL biology: bone metabolism, the immune system, and beyond. Inflamm Regen 2020; 40:2-17. doi:10.1186/s41232-019-0111-3.

6. Yang N, Liu Y. The role of the immune microenvironment in bone regeneration. Int J Med Sci 2021; 18(16):3697-3707. doi:10.7150/ijms.61080.

7. Nagy V, Penninger JM. The RANK-RANKL story. Gerontology 2015; 61(6):534-542.
doi: 10.1159/000371845.

8. Grills BL, Schuijers JA. Immunhistochemical localization of nerve growth factor in fractured and unfractured rat bone. Acta Orthop Scand 1998; 69(4):415-419. doi:10.3109/ 17453679808999059.

9. Grässel SG. The role of peripheral nerve fibers and their neurotransmitters in cartilage and bone physiology and pathophysiology. Arthritis Res Ther 2014; 16(6):485-497. doi:10.1186/s13075-014-0485-1.

10. Chen WH, Man CQ, Zhuo LL, Ong JL. Beta-nerve growth factor promotes neurogenesis and angiogenesis during the repair of bone defects. Neural Regen Res 2015; 10(7):1159-1165. doi:10.4103/1673-5374.160114.

11. Tao R, Mi B, Hu Y, et al. Hallmarks of peripheral nerve function in bone regeneration. Bone Res 2023; 11(1):6-23. doi:10.1038/s41413-022-00240-x.

12. Molnár I. Nervous, immune, endocrine regulatory systems and diseases associated with nerve growth factor co-secretion. Nova Science Publishers, 2010.

13. Samario-Román J, Larqué C, Pánico P, et al. NGF and its role in immunoendocrine communication during metabolic syndrome. Int J Mol Sci 2023; 24(3):1957-1980. doi: 10.3390/ijms24031957.

14. Santambrogio L, Benedetti M, Chao MV, et al. Nerve growth factor production by lymphocytes. J Immunol 1994; 153(10):4488-4495.

15. Auffray I, Chevalier S, Froger J, et al. Nerve growth factor is involved in the supportive effect by bone marrow-derived stromal cells of the factor-dependent human cell line UT-7. Blood 1996; 88(5):1608-1618.

16. Minnone G, De Benedetti F, Bracci-Laudiero L. NGF and its receptors in the regulation of inflammatory response. Int J Mol Sci 2017; 18(5): 1028-1047. doi: 10.3390/ijms18051028.

17. Zha K, Yang Y, Tian G, et al. Nerve growth factor (NGF) and NGF receptors in mesenchymal stem/stromal cells: Impact on potential therapies. Stem Cells Transl Med 2021; 10(7):1008-1020. doi: 10.1002/sctm.20-0290.

18. Skaper SD. Nerve growth factor: a neuroimmune crosstalk mediator for all seasons. Immunology 2017; 151(1):1-15. doi: 10.1111/imm.12717.

19. Dai WL, Yan B, Bao YN, Fan JF, Liu JH. Suppression of peripheral NGF attenuates neu¬ro¬-pathic pain induced by chronic constriction injury through the TAK1-MAPK/NF-κB sig¬naling pathways. Cell Commun Signal 2020; 18: 66-81. doi:10.1186/s12964-020-00556-3.

20. Tang M, Lu L, Yu X. Interleukin-17A interweaves the skeletal and immune systems. Front Immunol 2021; 11: 625034-625044. doi:10.3389/fimmu.2020.625034.

21. Xiao J, Zhang P, Cai FL, et al. IL-17 in osteoarthritis: A narrative review. Life Sci 2023; 18(1):20220747-20220758. doi:10.1515/biol-2022-0747.

22. Huang H, Kim HJ, Chang E-J, et al. IL-17 stimulates the proliferation and differentiation of human mesenchymal stem cells: Implications for bone remodeling. Cell Death Differ 2009; 16:1332-1343. doi:10.1038/cdd.2009.74.

23. Lee Y. The role of interleukin-17 in bone metabolism and inflammatory skeletal diseases. BMB Rep 2013; 46(10):479-483. doi:10.5483/BMBRep.2013.46.10.141.

24. Molnár I, Bohaty I, Somogyiné-Vári É: High prevalence of increased interleukin-17A serum levels in postmenopausal estrogen deficiency. Menopause 2014; 21:749-752.

25. Molnár I, Bohaty I, Somogyiné-Vári É. Serum IL-6, OPG and sRANKL ligand levels in premenopausal and postmenopausal women with low estrogen levels. Cell Immunol Immunother 2015; 1: 1-5.

26. Molnár I, Bohaty I, Somogyiné-Vári É. IL-17A-mediated sRANK ligand elevation involved in postmenopausal osteoporosis. Osteoporos Int 2014; 25(2):783-786. doi:10.1007/s00198-013-2548-6.

27. Molnár I. Postmenopausal lumbal spine osteoporosis in Hungarian women is charac¬te¬rized by increased serum levels of nerve growth factor. Int J Biomed Res Prac 2023; 3(1):1-7.

28. Chehimi M, Vidal H, Eljaafari A. Pathogenic role of IL-17-producing immune cells in obesity, and related inflammatory diseases. J Clin Med 2017; 6(7):68-87. doi:10,3390/ jcm6070068.

29. Bystrom J, Taher TE, Henson SM, Gould DJ, Mageed RA. Metabolic requirements of Th17 cells and of B cells: regulation and defects in health and in inflammatory diseases. Front Immunol 2022; 13:990794-990808.
doi: 10.3389/fimmu.2022.990794.

30. Ostrowska Z, Świętochowska E, Marek B, et al. Selected adipose tissue hormones, bone metabolism, osteoprotegerin and receptor activator of nuclear factor-κB ligand in postmen-pausal obese women. Endokrynol Pol 2014; 65(6):438-448. doi:10.5603/ EP.2014.0061.

31. Erazmus M, Rumińska M, Witkowska-Sędek E, et al. Decreased level of soluble receptor activator of nuclear factor- κβ ligand (sRANKL) in overweight and obese children. Front Endocrinol 2022; 13: 963467-963476. doi:10.3389/fendo.2022.963467.

32. Puengel T, Weber B, Wirtz TH, et al. Low serum levels of soluble receptor activator of nuclear factor κB ligand (sRANKL) are associated with metabolic dysregulation and predict long-term mortality in critically ill patients. Diagnostics 2022; 12(1):62-73. doi:10.3390/ diagnostics12010062.

33. Zhang J, Fu Q, Ren Z, et al. Changes of serum cytokines-related Th1/Th2/Th17 concentration in patients with postmenopausal osteoporosis. Gynecol Endocrinol 2015; 31(3):183-190. doi:10.3109/09513590.2014.975683.

34. Wu D, Cline-Smith A, Shashkova E, Perla A, Katyal A, Aurora R. T-cell mediated inflammation in postmenopausal osteoporosis. Front Immmunol 2021; 12:687551-687560. doi:10.3389/fimmu.2021.687551.

35. Tang M, Lu L, Yu X. Interleukin-17A interweaves the skeletal and immune systems. Front Immunol 2021; 11:625034-625044. doi:10.3389/fimmu.2020.625034.

36. Togari A, Arai M, Kondo H, Kodama D, Niwa Y. The neuro-osteogenic network: The sympathetic regulation of bone resorption. Japanese Dental Science Review 2012; 48(2):61-70. doi:10.1016/j.jdsr.2011.12.002.

37. Xu, J, Zhang Z, Zhao J, et al. Interaction between the nervous and skeletal systems. Front Cell Dev Biol 2022; 10:976736-976744. doi: 10.3389/fcell.2022.976736.

38. Snelling SJB, Bas S, Puskas GJ, et al. Presence of IL-17 in synovial fluid identifies a potential inflammatory osteoarthritic phenotype. PLoS ONE 2017; 12(4): e0175109-e0175121. doi: 10.1371/journal.pone.0175109.

39. Wan QQ, Quin WP, Ma YX, et al. Crosstalk between bone and nerves within bone. Adv Sci 2021; 8(7):2003390-2003413. doi: 10.1002/advs.202003390.

40. Tobeiha M, Moghadasian MH, Amin N, Jafarnejad S. RANKL/RANK/OPG pathway: A mechanism involved in exercise-induced bone remodeling. Biomed Res Int 2020; 2020: 6910312-6910322. doi:10.1155/2020/6910312.

41. Huang D, Zhao C, Li R, et al. Identification of a binding site on soluble RANKL that can be targeted to inhibit soluble RANK-RANKL interactions and treat osteoporosis. Nat Commun 2022; 13 (1):5338-5355. doi:10.1038/s41467-022-33006-4.

42. Gutierrez H, Kisiswa L, O’Keeffe GW, Smithen MJ, Wyatt S, Davies AM. Regulation of neurite growth by tumour necrosis superfamily member RANKL. Open Biol 2012; 3(1): 120150-120160. doi:10.1098/rsob.120150.

43. Zhao L, Lai Y, Jiao H, Huang J. Nerve growth factor receptor limits inflammation to promote remodeling and repair of osteoarthritic joints. Nat Commun 2024; 15(1):3225-3240. doi:10.1038/s41467-024-47633-6.

44. Li JY, Yu M, Tyagi AM, et al. IL-17 receptor signaling in osteoblasts/osteocytes mediates PTH-induced bone loss and enhances osteocytic RANKL production. J Bone Miner Res 2019; 34(2):349-360. doi: 10.1002/jbmr.3600.

45. Glasnovic A, O’Mara N, Kovačić N, Grčević D, Gajović S. RANK/RANKL/OPG signaling in the brain: A systematic review of the literature. Front Neurol 2020; 11:590480-590488. doi: 10.3389/fneur.2020.590480.