Immunogenicity and effectiveness of the Sinopharm BIBP COVID-19 inactivated vaccine in people living with HIV: A case-control study in Omicron era
Main Article Content
Abstract
There is limited information about COVID-19 vaccines in people living with HIV (PLWH). We aimed to compare the immunogenicity and effectiveness of the Sinopharm BIBP COVID-19 inactivated vaccine between PLWH and non-HIV individuals in the Omicron era. We evaluated the production of receptor-binding domain (RBD), spike, SARS-CoV-2 IgG, and neutralizing antibodies in both PLWH (case) and individuals without HIV (control) groups three months after they received the second dose of the vaccine. All participants were also followed during three months after the second dose for the COVID-19 infection and its outcomes (hospital admission, need to intensive care unit, and mortality). A total of 250 individuals comprising 150 PLWH and 100 people without HIV were recruited. The mean age was 42.2 years. The infection rate was significantly higher in non-HIV individuals than in PLWH (63% vs. 21.3%, p < 0.001). The hospitalization rate in the PLWH group was significantly hig1her than that in the non-HIV group (5.3% vs. 1%, p = 0.009). There were no significant differences in the mean levels of Spike antibody (84.4 ± 34.4 vs. 95 ± 109.5 RU/mL), RBD antibody (65.6 ± 42 vs. 69 ± 42.3 RU/mL), and SARS-CoV-2 IgG (2.9 ± 2.5 vs. 3 ± 2.3 Index) between the groups. The mean value of neutralizing antibodies was significantly higher in non-HIV individuals (34 ± 23.3 vs. 26.2 ± 20 µg/mL, p = 0.005). The Sinopharm BIBP COVID-19 inactivated vaccine can be as immunogenic in PLWH as in non-HIV individuals. This vaccine is likely more effective in preventing Omicron-associated hospitalization in non-HIV individuals.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Our World in Data. Coronavirus (COVID-19) Vaccinations, Daily COVID-19 vaccine doses administered in Iran. dataset. Our World in Data. Updated 16 Dec 2022. https://ourworldindata.org/covid-vaccinations?country=IRN
3. Koff WC, Schenkelberg T, Williams T, et al. Development and deployment of COVID-19 vaccines for those most vulnerable. Sci Transl Med. Feb 3 2021;13(579)doi:10.1126/scitranslmed.abd1525
4. van den Berg R, van Hoogstraten I, van Agtmael M. Non-responsiveness to hepatitis B vaccination in HIV seropositive patients; possible causes and solutions. AIDS Rev. Jul-Sep 2009;11(3):157-64.
5. Crum-Cianflone NF, Wallace MR. Vaccination in HIV-infected adults. AIDS Patient Care STDS. Aug 2014;28(8):397-410. doi:10.1089/apc.2014.0121
6. Mohraz M, Abbasi-Kangevari M, Ghamari S-H, et al. Immunogenicity and Safety of a Variant-Specific COVID-19 Vaccine Booster, BIV1-Coviran Plus: Findings from a Non-Inferiority, Parallel-Design Non-Randomised Clinical Trial.
7. Ahmed SF, Quadeer AA, McKay MR. Preliminary Identification of Potential Vaccine Targets for the COVID-19 Coronavirus (SARS-CoV-2) Based on SARS-CoV Immunological Studies. Viruses. Feb 25 2020;12(3)doi:10.3390/v12030254
8. Yu J, Tostanoski LH, Peter L, et al. DNA vaccine protection against SARS-CoV-2 in rhesus macaques. Science. Aug 14 2020;369(6505):806-811. doi:10.1126/science.abc6284
9. Heaton PM. The Covid-19 Vaccine-Development Multiverse. N Engl J Med. Nov 12 2020;383(20):1986-1988. doi:10.1056/NEJMe2025111
10. Thanh Le T, Andreadakis Z, Kumar A, et al. The COVID-19 vaccine development landscape. Nat Rev Drug Discov. May 2020;19(5):305-306. doi:10.1038/d41573-020-00073-5
11. Kim JH, Marks F, Clemens JD. Looking beyond COVID-19 vaccine phase 3 trials. Nature Medicine. 2021/02/01 2021;27(2):205-211. doi:10.1038/s41591-021-01230-y
12. Polack FP, Thomas SJ, Kitchin N, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med. Dec 31 2020;383(27):2603-2615. doi:10.1056/NEJMoa2034577
13. Reuters. Sinopharm’s COVID-19 vaccine 79% effective, seeks approval in China. . https://www.reuters.com/article/us-health-coronavirus-china-vaccine/sinopharms-covid-19-vaccine-79-effective-seeks-approval-in-china-idUSKBN2940C8 (2020).
14. Forni G, Mantovani A. COVID-19 vaccines: where we stand and challenges ahead. Cell Death Differ. Feb 2021;28(2):626-639. doi:10.1038/s41418-020-00720-9
15. Zhang Y, Zeng G, Pan H, et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18-59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect Dis. Feb 2021;21(2):181-192. doi:10.1016/s1473-3099(20)30843-4
16. Xia S, Duan K, Zhang Y, et al. Effect of an Inactivated Vaccine Against SARS-CoV-2 on Safety and Immunogenicity Outcomes: Interim Analysis of 2 Randomized Clinical Trials. JAMA. 2020;324(10):951-960. doi:10.1001/jama.2020.15543
17. Evidence Assessment: Sinopharm/BBIBP COVID-19 vaccine, for recommendation by the strategic advisory group of experts (sage) on immunization prepared by the sage working group on covid-19 vaccines (World Health Organization) (2021).
18. Tao K, Tzou PL, Nouhin J, et al. The biological and clinical significance of emerging SARS-CoV-2 variants. Nat Rev Genet. Dec 2021;22(12):757-773. doi:10.1038/s41576-021-00408-x
19. WHO. SARS-CoV-2 variants of concern and variants of interest. . World Health Organization.
20. Shrotri M, Navaratnam AMD, Nguyen V, et al. Spike-antibody waning after second dose of BNT162b2 or ChAdOx1. Lancet. Jul 31 2021;398(10298):385-387. doi:10.1016/s0140-6736(21)01642-1
21. Madhi SA, Baillie V, Cutland CL, et al. Efficacy of the ChAdOx1 nCoV-19 Covid-19 Vaccine against the B.1.351 Variant. New England Journal of Medicine. 2021;384(20):1885-1898. doi:10.1056/NEJMoa2102214
22. Tang P, Hasan MR, Chemaitelly H, et al. BNT162b2 and mRNA-1273 COVID-19 vaccine effectiveness against the Delta (B.1.617.2) variant in Qatar. medRxiv. 2021:2021.08.11.21261885. doi:10.1101/2021.08.11.21261885
23. Vaughan A. Omicron emerges. New Sci. Dec 4 2021;252(3363):7. doi:10.1016/s0262-4079(21)02140-0
24. Choi A, Koch M, Wu K, et al. Safety and immunogenicity of SARS-CoV-2 variant mRNA vaccine boosters in healthy adults: an interim analysis. Nat Med. Nov 2021;27(11):2025-2031. doi:10.1038/s41591-021-01527-y
25. Meng B, Ferreira I, Abdullahi A, et al. SARS-CoV-2 Omicron spike mediated immune escape, infectivity and cell-cell fusion. 2021;
26. Dejnirattisai W, Shaw RH, Supasa P, et al. Reduced neutralisation of SARS-CoV-2 omicron B.1.1.529 variant by post-immunisation serum. Lancet. Jan 15 2022;399(10321):234-236. doi:10.1016/s0140-6736(21)02844-0
27. Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. Mar 2020;38(1):1-9. doi:10.12932/ap-200220-0772
28. Gupta R. SARS-CoV-2 Omicron spike mediated immune escape and tropism shift. Res Sq. Jan 17 2022;doi:10.21203/rs.3.rs-1191837/v1
29. Garcia-Beltran WF, St Denis KJ, Hoelzemer A, et al. mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant. Cell. Feb 3 2022;185(3):457-466.e4. doi:10.1016/j.cell.2021.12.033
30. Sewell HF, Agius RM, Stewart M, Kendrick D. Cellular immune responses to covid-19. Bmj. Jul 31 2020;370:m3018. doi:10.1136/bmj.m3018
31. Galmiche S, Luong Nguyen LB, Tartour E, et al. Immunological and clinical efficacy of COVID-19 vaccines in immunocompromised populations: a systematic review. Clin Microbiol Infect. Feb 2022;28(2):163-177. doi:10.1016/j.cmi.2021.09.036
32. Plummer MM, Pavia CS. COVID-19 Vaccines for HIV-Infected Patients. Viruses. Sep 22 2021;13(10)doi:10.3390/v13101890
33. National Institutes of Health. Janssen Investigational COVID-19 Vaccine: Interim Analysis of Phase 3 Clinical Data Released. 2021.
34. Duly K, Farraye FA, Bhat SJAJoH-SP. COVID-19 vaccine use in immunocompromised patients: A commentary on evidence and recommendations. 2022;79(2):63-71.
35. Inciarte A, Gonzalez-Cordon A, Rojas J, et al. Clinical characteristics, risk factors, and incidence of symptomatic coronavirus disease 2019 in a large cohort of adults living with HIV: a single-center, prospective observational study. Aids. Oct 1 2020;34(12):1775-1780. doi:10.1097/qad.0000000000002643
36. Del Amo J, Polo R, Moreno S, et al. Incidence and Severity of COVID-19 in HIV-Positive Persons Receiving Antiretroviral Therapy : A Cohort Study. Ann Intern Med. Oct 6 2020;173(7):536-541. doi:10.7326/m20-3689
37. Brown LB, Spinelli MA, Gandhi M. The interplay between HIV and COVID-19: summary of the data and responses to date. Curr Opin HIV AIDS. Jan 2021;16(1):63-73. doi:10.1097/coh.0000000000000659
38. Charre C, Icard V, Pradat P, et al. Coronavirus disease 2019 attack rate in HIV-infected patients and in preexposure prophylaxis users. Aids. Oct 1 2020;34(12):1765-1770. doi:10.1097/qad.0000000000002639
39. SeyedAlinaghi S, Ghadimi M, Hajiabdolbaghi M, et al. Prevalence of COVID-19-like Symptoms among People Living with HIV, and Using Antiretroviral Therapy for Prevention and Treatment. Curr HIV Res. 2020;18(5):373-380. doi:10.2174/1570162x18666200712175535
40. Sigel K, Swartz T, Golden E, et al. Coronavirus 2019 and People Living With Human Immunodeficiency Virus: Outcomes for Hospitalized Patients in New York City. Clin Infect Dis. Dec 31 2020;71(11):2933-2938. doi:10.1093/cid/ciaa880
41. Collins LF, Moran CA, Oliver NT, et al. Clinical characteristics, comorbidities and outcomes among persons with HIV hospitalized with coronavirus disease 2019 in Atlanta, Georgia. Aids. Oct 1 2020;34(12):1789-1794. doi:10.1097/qad.0000000000002632
42. Park L, Rentsch C, Sigel K, et al. COVID-19 in the largest US HIV cohort. 2020:
43. Dandachi D, Geiger G, Montgomery MW, et al. Characteristics, Comorbidities, and Outcomes in a Multicenter Registry of Patients With Human Immunodeficiency Virus and Coronavirus Disease 2019. Clin Infect Dis. Oct 5 2021;73(7):e1964-e1972. doi:10.1093/cid/ciaa1339
44. Yadav PD, Sapkal GN, Ella R, et al. Neutralization of Beta and Delta variant with sera of COVID-19 recovered cases and vaccinees of inactivated COVID-19 vaccine BBV152/Covaxin. Journal of travel medicine. Oct 11 2021;28(7)doi:10.1093/jtm/taab104
45. Palacios R, Patiño EG, de Oliveira Piorelli R, et al. Double-Blind, Randomized, Placebo-Controlled Phase III Clinical Trial to Evaluate the Efficacy and Safety of treating Healthcare Professionals with the Adsorbed COVID-19 (Inactivated) Vaccine Manufactured by Sinovac - PROFISCOV: A structured summary of a study protocol for a randomised controlled trial. Trials. Oct 15 2020;21(1):853. doi:10.1186/s13063-020-04775-4
46. Salehi M, Hosseini H, Jamshidi HR, et al. Assessment of BIV1-CovIran inactivated vaccine-elicited neutralizing antibody against the emerging SARS-CoV-2 variants of concern. Clin Microbiol Infect. Jun 2022;28(6):882.e1-882.e7. doi:10.1016/j.cmi.2022.02.030
47. Geretti AM, Doyle T. Immunization for HIV-positive individuals. Curr Opin Infect Dis. Feb 2010;23(1):32-8. doi:10.1097/QCO.0b013e328334fec4
48. Brumme ZL, Mwimanzi F, Lapointe HR, et al. Humoral immune responses to COVID-19 vaccination in people living with HIV receiving suppressive antiretroviral therapy. 2022;7(1):1-12.
49. Kernéis S, Launay O, Turbelin C, Batteux F, Hanslik T, Boëlle PY. Long-term immune responses to vaccination in HIV-infected patients: a systematic review and meta-analysis. Clin Infect Dis. Apr 2014;58(8):1130-9. doi:10.1093/cid/cit937
50. Bertoletti A, Gehring AJ. The immune response during hepatitis B virus infection. J Gen Virol. Jun 2006;87(Pt 6):1439-1449. doi:10.1099/vir.0.81920-0
51. Ho C, Lee S, Wong K, Cheng L, Lam M. Setting a minimum threshold CD4 count for initiation of highly active antiretroviral therapy in HIV-infected patients. HIV Med. Apr 2007;8(3):181-5. doi:10.1111/j.1468-1293.2007.00450.x
52. Levy I, Wieder-Finesod A, Litchevsky V, et al. Immunogenicity and safety of the BNT162b2 mRNA COVID-19 vaccine in people living with HIV-1. Clin Microbiol Infect. Dec 2021;27(12):1851-1855. doi:10.1016/j.cmi.2021.07.031
53. Malaspina A, Moir S, Orsega SM, et al. Compromised B cell responses to influenza vaccination in HIV-infected individuals. J Infect Dis. May 1 2005;191(9):1442-50. doi:10.1086/429298
54. Autran B, Carcelaint G, Li TS, et al. Restoration of the immune system with anti-retroviral therapy. Immunol Lett. Mar 1999;66(1-3):207-11. doi:10.1016/s0165-2478(98)00159-x
55. Sutcliffe CG, Moss WJ. Do children infected with HIV receiving HAART need to be revaccinated? Lancet Infect Dis. Sep 2010;10(9):630-42. doi:10.1016/s1473-3099(10)70116-x
56. Crum-Cianflone NF, Wilkins K, Lee AW, et al. Long-term durability of immune responses after hepatitis A vaccination among HIV-infected adults. J Infect Dis. Jun 15 2011;203(12):1815-23. doi:10.1093/infdis/jir180
57. Madhi SA, Klugman KP, Kuwanda L, Cutland C, Käyhty H, Adrian P. Quantitative and Qualitative Anamnestic Immune Responses to Pneumococcal Conjugate Vaccine in HIV-Infected and HIV-Uninfected Children 5 Years after Vaccination. The Journal of Infectious Diseases. 2009;199(8):1168-1176. doi:10.1086/597388
58. Pacanowski J, Lacombe K, Campa P, et al. Plasma HIV-RNA is the key determinant of long-term antibody persistence after Yellow fever immunization in a cohort of 364 HIV-infected patients. J Acquir Immune Defic Syndr. Apr 1 2012;59(4):360-7. doi:10.1097/QAI.0b013e318249de59
59. Overton ET, Sungkanuparph S, Powderly WG, Seyfried W, Groger RK, Aberg JA. Undetectable plasma HIV RNA load predicts success after hepatitis B vaccination in HIV-infected persons. Clin Infect Dis. Oct 1 2005;41(7):1045-8. doi:10.1086/433180
60. Bachmann MF, Mohsen MO, Zha L, Vogel M, Speiser DE. SARS-CoV-2 structural features may explain limited neutralizing-antibody responses. NPJ Vaccines. Jan 4 2021;6(1):2. doi:10.1038/s41541-020-00264-6
61. Xiaojie S, Yu L, Lei Y, Guang Y, Min Q. Neutralizing antibodies targeting SARS-CoV-2 spike protein. Stem Cell Res. Dec 15 2020;50:102125. doi:10.1016/j.scr.2020.102125
62. Wölfel R, Corman VM, Guggemos W, et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020/05/01 2020;581(7809):465-469. doi:10.1038/s41586-020-2196-x
63. Bennett RS, Postnikova EN, Liang J, et al. Scalable, Micro-Neutralization Assay for Assessment of SARS-CoV-2 (COVID-19) Virus-Neutralizing Antibodies in Human Clinical Samples. Viruses. May 12 2021;13(5)doi:10.3390/v13050893
64. Lippi G, Sciacovelli L, Trenti T, Plebani M. Kinetics and biological characteristics of humoral response developing after SARS-CoV-2 infection: implications for vaccination. Clin Chem Lab Med. Jul 27 2021;59(8):1333-1335. doi:10.1515/cclm-2021-0038
65. Tan CW, Chia WN, Qin X, et al. A SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2-spike protein-protein interaction. Nat Biotechnol. Sep 2020;38(9):1073-1078. doi:10.1038/s41587-020-0631-z
66. Valcourt EJ, Manguiat K, Robinson A, et al. Evaluation of a commercially-available surrogate virus neutralization test for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Diagn Microbiol Infect Dis. Apr 2021;99(4):115294. doi:10.1016/j.diagmicrobio.2020.115294
67. Cristiano A, Pieri M, Sarubbi S, et al. Evaluation of serological anti-SARS-CoV-2 chemiluminescent immunoassays correlated to live virus neutralization test, for the detection of anti-RBD antibodies as a relevant alternative in COVID-19 large-scale neutralizing activity monitoring. Clin Immunol. Jan 2022;234:108918. doi:10.1016/j.clim.2021.108918
68. Muruato AE, Fontes-Garfias CR, Ren P, et al. A high-throughput neutralizing antibody assay for COVID-19 diagnosis and vaccine evaluation. Nat Commun. Aug 13 2020;11(1):4059. doi:10.1038/s41467-020-17892-0
69. GeurtsvanKessel CH, Okba NMA, Igloi Z, et al. An evaluation of COVID-19 serological assays informs future diagnostics and exposure assessment. Nat Commun. Jul 6 2020;11(1):3436. doi:10.1038/s41467-020-17317-y