Effect of expansion of Shine-Dalgarno sequence for expression of malate- and aldehyde-dehydrogenase genes from Deinococcus geothermalis in Escherichia coli
Main Article Content
Abstract
The thermostability of thermophilic enzymes makes them ideal for use in biotechnology and medical science research. The overexpression of heterogeneous genes from thermophiles, such as the mesophilic Deinococcus geothermalis, in Escherichia coli is a genetic engineering technique for producing stable and useful proteins. In our previous study, 1- or 2-base expansion of the Shine-Dalgarno sequence, which is a ribosome-binding site in mRNA, was effective for the overexpression of the nicotinamide adenine dinucleotide oxidase gene from Deinococcus. geothermalis in Escherichia coli. In the present study, we examined the effect of expanding the Shine-Dalgarno sequence of the malate dehydrogenase gene and three genes from the aldehyde dehydrogenase family. Our results revealed that a 1- or 2-base expansion of the Shine-Dalgarno sequence was effective for the overexpression of all genes from Deinococcus geothermalis in Escherichia coli. However, the effects of the expansion of Shine-Dalgarno sequence from 3 to 5 bases were different between these genes.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Schchiri M, Kawamori R, Yamasaki Y, Hakui N, Abe H. Wearable artificial endocrine pancreas with needle-type glucose sensor. Lancet. 1982;320:129-1131. doi: 10.1016/s0140-6736(82)92788-x
3. Ishikawa M. Effect of expansion of Shine-Dalgarno sequence for overexpression of nicotinamide adenine dinucleotide oxidase gene from Deinococcus geothermalis in Escherichia coli. Med. Res. Arch.. July 2023;11(7.2). doi: 10.1016/S1001-0742(14)60650-1
4. Ferreira AC, Nobre MF, Rainey FA et al. Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two exttremely radiation-resistant and slightly thermophilic species from hot springs. Int. J. Syst. Bacteriol. 1997;47(4):939–947. doi: 10.1099/00207713-47-4-939
5. Shine D, Dalgarno L. The 3ʹ-terminal sequence of Escherichia coli 16S ribosomal RNA: Complementarity to nonsense triplets and ribosome binding sites. Proc. Natl. Acad. Sci. USA 1974;71:1342-1346. doi: 10.1073/pnas.7.1.4.1342
6. Steitz JA, Jakes K. How ribosomes select initiator regions in mRNA: base pair formation between the 3’-terminus of 16S rRNA and the mRNA during initiation of protein synthesis in Escherichia coli. Proc. Natl. Acad. Sci. USA 1975;72(12):4734-4738. Doi: 10.1073/pnas.72.12.4734
7. Lee K, Holland-Staley CA, Cunningham PR. Genetic analysis of the Shine-Dalgarno interaction: selection of alternative functional mRNA-rRNA combinations. RNA 1996;2(12):1270-1285. PMID:8972775
8. Musrati RA, Kollarova M, Mernik N, Mikulasova D. Malate dehydrogenase: distribution, function and properties. Gen. Physol. Biophys.1998;17(3):193-210. PMID:9834842
9. Minarik P, Tomaskova N, Kollarova M. Antalik M. Malate dehydrogenase--structure and function. Gen. Physiol. Biophys. 2000;21(3):257-265. PMID:12537350
10. Sophos NA, Vasiliou V. Aldehyde dehydrogenase gene superfamily: the 2002 update. Chem Biol Interact. 2003;143–144:5–22. doi: 10.1016/s0009-2797(02)00163-1
11. Suzuki S, Matsumura N, Ohoka T, Sakuma S, Nakamura T, Ishikawa M. Important sequence for overexpression of NADH oxidase gene from Thermus thermophilus HB8 in Escherichia coli. J. Environ. Sci. 2009(Suppl 1):S105-107. doi: 10.1016/S1001-0742(09)60049-8
12. Sase K, Iwasaki T, Karasawa H, Ishikawa M. Overexpression of NADH oxidase gene from Deinococcus geothermalis in Escherichia coli. J. Environ. Sci. 2013; 25(Suppl.): S169-171. doi: 10.1016/S1001-0742(14)60650-1
13. Leberman R, Antonsson B, Giovanelli R, Guariguata R, Schumann R, Wittinghofer A. A simplified procedure for the isolation of bacterial polypeptide elongation factor EF-Tu. Anal. Biochem. 1980;104:29–36. doi: 10.1016/0003-2697(80)90272-9
14. Hengen P. Purification of His-Tag fusion proteins from Escherichia coli. Trends biochem. Sci. 1995;20(7):285--286. doi: 10.1016/s0968-0004(00)89045-3
15. Lebsack ME, Gordon ER, Lieber CS. Effect of chronic ethanol consumption on aldehyde dehydrogenase activity in the baboon, Biochem. Pharmacol. 1981;30:2273–2277. doi: 10.1016/0006-2952(81)90098-8
16. de Smit, MH, van Duin, J. Secondary structure of the ribosome binding site determines translational efficiency: a quantitative analysis. Proc. Natl. Acad. Sci. USA. 1990;87:7668–7672. doi: 10.1073/pnas.87.19.7668
17. Yin J, Bao L, Tian H, Gao X, Yao W. Quantitative relationship between the mRNA secondary structure of translational initiation region and the expression level of heterologous protein in Eschrichia coli. J. Ind. Microbiol. Biotechnol. 2016;43(1):97-102. doi: 10.1007/s10295-015-1699-1