Intelligent Insights for Noninvasive Aortic Valve Stenosis therapeutics
Main Article Content
Abstract
Stagnation of therapeutic options is a prominent feature of valvular aortic stenosis(AS). Invasive therapeutic options in the form of open heart aortic valve surgery or transcatheter aortic valve implantation (TAVI) are still the only therapeutic options until the moment. Decoding the mystery of AS morphogenesis is a challenging endeavor. It is only possible by multidisciplinary approach emanating from epidemiological back ground. Eagle eye observations of clinical correlates as well as prudent research in the molecular , genetic and epigenetic arena targeting decoding the genesis involved in bicuspid aortic valve formation are critical demands to throw stone in the stagnant lake. Hybrid pharmaceutical therapies combined with effective physical therapies will pave the way for future breakthroughs targeting noninvasive therapeutic options for valvular aortic stenosis or even aborting the disease in human species.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Yang DC, Chen CH. Cigarette Smoking-Mediated Macrophage Reprogramming: Mechanistic Insights and Therapeutic Implications. J Nat Sci. 2018 Nov;4(11):e539. PMID: 30801020; PMCID: PMC6383770.
3. Wylie-Sears J, Aikawa E, Levine RA, Yang JH, Bischoff J. Mitral valve endothelial cells with osteogenic differentiation potential. Arterioscler Thromb Vasc Biol. 2011;31:598–607. PMID: 21164078.
4. Rabkin E, Aikawa M, Stone JR, Fukumoto Y, Libby P, Schoen FJ. Activated interstitial myofibroblasts express catabolic enzymes and mediate matrix remodeling in myxomatous heart valves. Circulation. 2001;104:2525–2532. PMID: 11714645.
5. Forsdahl SH, Singh K, Solberg S, Jacobsen BK. Risk factors for abdominal aortic aneurysms: a 7-year prospective study: the tromsø study, 1994 2001. Circulation. 2009;119(16):2202–2208.
6. Kobeissi E, Hibino M, Pan H, Aune D. Blood pressure, hypertension and the risk of abdominal aortic aneurysms: a systematic review and meta-analysis of cohort studies. Eur J Epidemiol. 2019 Jun;34(6):547-555. doi: 10.1007/s10654-019-00510-9. Epub 2019 Mar 22. PMID: 30903463; PMCID: PMC6497813.
7. Malayala SV, Raza A, Vanaparthy R. Gender-Based Differences in Abdominal Aortic Aneurysm Rupture: A Retrospective Study. J Clin Med Res. 2020 Dec;12(12):794-802. doi: 10.14740/jocmr4376. Epub 2020 Dec 18. Erratum in: J Clin Med Res. 2021 Jul;13(7):412. PMID: 33447313; PMCID: PMC7781278.
8. Simard L, Côté N, Dagenais F, Mathieu P, Couture C, Trahan S, Bossé Y, Mohammadi S, Pagé S, Joubert P, et al. Sex-related discordance between aortic valve calcification and hemodynamic severity of aortic stenosis: is valvular fibrosis the explanation? Circ Res. 2017;120:681–691. doi: 10.1161/CIRCRESAHA.116.309306.
9. Shantikumar S, Ajjan R, Porter KE, Scott DJA. Diabetes and the abdominal aortic aneurysm. Eur J Vasc Endovasc Surg. 2010;39(2):200–207.
10. Golledge J, Karan M, Moran CS, et al. Reduced expansion rate of abdominal aortic aneurysms in patients with diabetes may be related to aberrant monocyte-matrix interactions. Eur Heart J. 2008;29(5):665–672.
11. Miyama N, Dua MM, Yeung JJ, et al. Hyperglycemia limits experimental aortic aneurysm progression. J Vasc Surg. 2010;52(4):975–983.
12. Dhanasekaran DN, Reddy EP. JNK signaling in apoptosis. Oncogene. 2008 Oct;27(48):6245–51.
13. Pirianov G, Torsney E, Howe F, Cockerill GW. Rosiglitazone negatively regulates c-Jun N-terminal kinase and toll-like receptor 4 proinflammatory signalling during initiation of experimental aortic aneurysms. Atherosclerosis. 2012 Nov;225(1):69–75.
14. Bao W, Morimoto K, Hasegawa T, Sasaki N, Yamashita T, Hirata K, et al. Orally administered dipeptidyl peptidase-4 inhibitor (alogliptin) prevents abdominal aortic aneurysm formation through an antioxidant effect in rats. J Vasc Surg. 2014 Apr;59(4):1098–108.
15. Fujimura N, Xiong J, Kettler EB, et al. Metformin treatment status and abdominal aortic aneurysm disease progression. J Vasc Surg. 2016;64(1):46-54 e48.
16. Kumar SD, Dheen ST, Tay SS. Maternal diabetes induces congenital heart defects in mice by altering the expression of genes involved in cardiovascular development. Cardiovasc Diabetol. 2007;6:34.
17. Liang J, Gui Y, Wang W, Gao S, Li J, et al. Elevated glucose induces congenital heart defects by altering the expression of tbx5, tbx20, and has2 in developing zebrafish embryos. Birth Defects Res Part A Clin Mol Teratol. 2010;88(6):480–486.
18. Lister R, Chamberlain A, Einstein F, Wu B, Zheng D, Zhou B. Intrauterine Programming of Diabetes Induced Cardiac Embryopathy. Diabetes Obes Int J. 2019;4(3):202. Epub 2019 May 6. PMID: 32537569; PMCID: PMC7293196.
19. Chamberlain AA, Lin M, Lister RL, Maslov AA, Wang Y, et al. DNA methylation is developmentally regulated for genes essential for cardiogenesis. J Am Heart Assoc. 2014;3(3):e000976.
20. Gošev I, Zeljko M, Đurić Ž, et al. Epigenome alterations in aortic valve stenosis and its related left ventricular hypertrophy. Clin Epigenet. 2017;9:106.
21. Oldershaw RA, Richardson G, Carling P, Owens WA, Lundy DJ, Meeson A. Cardiac Mesenchymal Stem Cell-like Cells Derived from a Young Patient with Bicuspid Aortic Valve Disease Have a Prematurely Aged Phenotype. Biomedicines. 2022;10:3143.
22. Dweck MR, Boon NA, Newby DE. Calcific aortic stenosis: A disease of the valve and the myocardium. J Am Coll Cardiol. 2012;60:1854–1863.
23. Diamond DM, Alabdulgader AA, de Lorgeril M, Harcombe Z, Kendrick M, Malhotra A, et al. Dietary recommendations for familial hypercholesterolaemia: an evidence-free zone. BMJ Evid Based Med. 2020.
24. Ravnskov U, Alabdulgader A, de Lorgeril M, Diamond DM, Hama R, Hamazaki T, et al. The new European guidelines for prevention of cardiovascular disease are misleading. Expert Rev Clin Pharmacol. 2020;13(12):1289-1294.
25. Alabdulgader A. The Great Cholesterol Quandary and Global Consciousness Awakening. World J Cardiovasc Dis. 2023;13(11):718-755.
26. Ravnskov U, Alabdulgader A, McCully KS. Infections May Cause Arterial Inflammation, Atherosclerosis, Myocarditis and Cardiovascular Disease. Med Res Arch. 2023;11(5).
27. Alabdulagader A. CHOLESTEROL MYTH FROM SCRUPULOSITY IN THE 1953 TO CERTITUDE IN 2018. Int J Adv Res. 2018;6(Oct):1237-1242.
28. Rosch P, Alabdulgader A. Lipid Lunacy: Diet delusions and what really causes heart disease. Columbus Publishing Ltd; 2020.
29. Dichtl W, Alber HF, Feuchtner GM, Hintringer F, Reinthaler M, Bartel T, et al. Prognosis and risk factors in patients with asymptomatic aortic stenosis and their modulation by atorvastatin (20 mg). Am J Cardiol. 2008;102:743–748.
30. Chan KL, Teo K, Dumesnil JG, Ni A, Tam J, ASTRONOMER Investigators. Effect of lipid lowering with rosuvastatin on progression of aortic stenosis: Results of the aortic stenosis progression observation: Measuring effects of rosuvastatin (ASTRONOMER) trial. Circulation. 2010;121:306–314.
31. Cowell SJ, Newby DE, Prescott RJ, Bloomfield P, Reid J, Northridge DB, et al. A randomized trial of intensive lipid-lowering therapy in calcific aortic stenosis. N Engl J Med. 2005;352:2389–2397.
32. Rossebo AB, Pedersen TR, Boman K, Brudi P, Chambers JB, Egstrup K, et al. Intensive lipid lowering with simvastatin and ezetimibe in aortic stenosis.
33. O’Brien KD, Probstfield JL, Caulfield MT, Nasir K, Takasu J, Shavelle DM, et al. Angiotensin-converting enzyme inhibitors and change in aortic valve calcium. Arch Intern Med. 2005;165:858–862.
34. Rosenhek R, Rader F, Loho N, Gabriel H, Heger M, Klaar U, et al. Statins but not angiotensin-converting enzyme inhibitors delay progression of aortic stenosis. Circulation. 2004;110:1291–1295.
35. Aksoy Y, Yagmur C, Tekin GO, Yagmur J, Topal E, Kekilli E, et al. Aortic valve calcification: Association with bone mineral density and cardiovascular risk factors. Coron Artery Dis. 2005;16:379–383.
36. Persy V, D’Haese P. Vascular calcification and bone disease: The calcification paradox. Trends Mol Med. 2009;15:405–416.
37. Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev. 1998;12:1260–1268.
38. Price PA, Faus SA, Williamson MK. Bisphosphonates alendronate and ibandronate inhibit artery calcification at doses comparable to those that inhibit bone resorption. Arterioscler Thromb Vasc Biol. 2001;21:817–824.
39. Rapoport HS, Connolly JM, Fulmer J, Dai N, Murti BH, Gorman RC, et al. Mechanisms of the in vivo inhibition of calcification of bioprosthetic porcine aortic valve cusps and aortic wall with triglycidylamine/mercapto bisphosphonate. Biomaterials. 2007;28:690–699.
40. Pawade TA, Newby DE, Dweck MR. Calcification in aortic stenosis: The skeleton key. J Am Coll Cardiol. 2015;66:561–577.
41. Kleinauskiene R, Jonkaitiene R. Degenerative aortic stenosis, dyslipidemia and possibilities of medical treatment. Medicina. 2018;54:24.
42. Cote N, El Husseini D, Pepin A, Bouvet C, Gilbert LA, Audet A, et al. Inhibition of ectonucleotidase with ARL67156 prevents the development of calcific aortic valve disease in warfarin-treated rats. Eur J Pharmacol. 2012;689:139–146.
43. Alabdulgader A. Future of cardiovascular practice: Alert to change or call for revolution. J Cardiovasc Med Ther. 2017;1(1):1.
44. Messas E, Ijsselmuiden A, Trifunović-Zamaklar D, et al. Treatment of severe symptomatic aortic valve stenosis using non-invasive ultrasound therapy: a cohort study. Lancet. 2023 Dec 16;402(10419):2317-2325. doi: 10.1016/S0140-6736(23)01518-0. Epub 2023 Nov 14. PMID: 37972628.