An Accurate Algebraic Closed Form Solution for Drug Transport Kinetics through P-Glycoprotein Expressing Confluent Cell Monolayers by Fitting Our Experimentally Derived Empirical Fitting Function with the Elementary Rate Constants of 370 Virtual P-gp subs

Main Article Content

Joe Bentz Harma Ellens

Abstract

The kinetics of transport by P-gp through confluent cell monolayers is typically modelled by a version of the Michaelis-Menten equations within PBPK mechanistic models1-5. The quasi-steady-state Michaelis-Menten equation was solved by the Lambert W-function, which is an infinite summation series that can only be evaluated in Matlab, Maple and a few other math programs6. Our Structural Mass Action Kinetic Model (SMAKM) for P-gp transport through confluent cell monolayers was built from a more accurate set of mass action kinetic equations. Its most significant departure from PBPK mechanistic models was that P-gp can only bind drug that has partitioned from the cytosol into the cytosolic monolayer, according to its molar partition coefficient KPC, since that is where P-gp’s substrate binding site resides. Our analysis of P-gp transport for many drugs using SMAKM has shown that most, if not all, commonly used P-gp expressing cells also express basolateral and apical uptake transporters for many, if not all, P-gp substrates. An algebraic Closed Form Solution for P-gp transport has been built by fitting the elementary rate constants of 370 Virtual P-gp substrates to an algebraic equation we started building in 2005 to fit our experimental drug transport kinetics through P-gp expressing confluent cell monolayers. The resultant algebraic Closed Form Solution clearly shows how each of P-gp’s elementary rate constants contributes to transport. It is currently used, within Excel, to predict the upper and lower bounds required to fit the elementary rate constants of new experimental drug transport data using Matlab’s Particle Swarm program.

Keywords: P-glycoprotein (P-gp), Drug Transport Kinetics, Confluent Cell Monolayers, Structural Mass Action Kinetic Model (SMAKM), Algebraic Closed Form Solution, Michaelis-Menten Equation, Virtual P-gp Substrates

Article Details

How to Cite
BENTZ, Joe; ELLENS, Harma. An Accurate Algebraic Closed Form Solution for Drug Transport Kinetics through P-Glycoprotein Expressing Confluent Cell Monolayers by Fitting Our Experimentally Derived Empirical Fitting Function with the Elementary Rate Constants of 370 Virtual P-gp subs. Medical Research Archives, [S.l.], v. 12, n. 8, aug. 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/5738>. Date accessed: 07 jan. 2025. doi: https://doi.org/10.18103/mra.v12i8.5738.
Section
Research Articles

References

1. Zamek-Gliszczynski MJ, Lee CA, Poirier A, Bentz J, Chu X, Ellens H, Ishikawa T, Jamei M, Kalvass JC, Nagar S, Pang KS, Korzekwa K, Swaan PW, Taub ME, Zhao P, Galetin A; International Transporter Consortium. ITC recommendations for transporter kinetic parameter estimation and translational modeling of transport-mediated PK and DDIs in humans. Clin Pharmacol Ther. 2013 Jul;94(1):64-79. doi: 10.1038/clpt.2013.45. Epub 2013 Feb 25. PMID: 23588311; PMCID: PMC3898877.

2. Nagar S, Argikar UA, Tweedie DJ. Enzyme kinetics in drug metabolism: fundamentals and applications. Methods Mol Biol. 2014; 1113:1-6. doi: 10.1007/978-1-62703-758-7_1. PMID: 24523105.

3. Chu X, Prasad B, Neuhoff S, Yoshida K, Leeder JS, Mukherjee D, Taskar K, Varma MVS, Zhang X, Yang X, Galetin A. Clinical Implications of Altered Drug Transporter Abundance/Function and PBPK Modeling in Specific Populations: An ITC Perspective. Clin Pharmacol Ther. 2022 Sep;112(3) :501-526. doi: 10.1002/cpt.2643. Epub 2022 Jun 21. PMID: 35561140.

4. Yamazaki S, Evers R, De Zwart L. Physiologically-based pharmacokinetic modeling to evaluate in vitro-to-in vivo extrapolation for intestinal P-glycoprotein inhibition. CPT Pharmacometrics Syst Pharmacol. 2022 Jan;11(1):55-67. doi: 10.1002/psp 4.12733. Epub 2021 Nov 6. Erratum in: CPT Pharmacometrics Syst Pharmacol. 2022 Oct;11(10) :1394. doi: 10.1002/psp4.12860. PMID: 34668334; PMCID: PMC8752109.

5. Galetin A, Brouwer KLR, Tweedie D, Yoshida K, Sjöstedt N, Aleksunes L, Chu X, Evers R, Hafey MJ, Lai Y, Matsson P, Riselli A, Shen H, Sparreboom A, Varma MVS, Yang J, Yang X, Yee SW, Zamek-Gliszczynski MJ, Zhang L, Giacomini KM. Membrane transporters in drug development and as determinants of precision medicine. Nat Rev Drug Discov. 2024 Apr;23(4):255-280. doi: 10.1038 /s41573-023-00877-1. Epub 2024 Jan 24. PMID: 38267543.

6. Schnell S, Mendoza C (1997) Closed form solution for time-dependent enzyme kinetics. J Theor Biol 187, 207–212.

7. Acharya, P., O'Connor, M. P., Polli, J. W., Ayrton, A., Ellens, H., Bentz, J. (2008). Kinetic identification of membrane transporters that assist P-glycoprotein-mediated transport of digoxin and loperamide through a confluent monolayer of MDCKII-hMDR1 cells. Drug Metab Dispos, 36(2), 452-460. doi: 10.1124/dmd.107.017301

8. Agnani D, Acharya P, Martinez E, Tran TT, Abraham F, Tobin F, Ellens H, Bentz J. Fitting the elementary rate constants of the P-gp transporter network in the hMDR1-MDCK confluent cell monolayer using a particle swarm algorithm. PLoS One. 2011;6(10):e25086. doi: 10.1371/journal. pone.0025086. Epub 2011 Oct 18. PMID: 2202877 2; PMCID: PMC3196501.

9. Lumen AA, Acharya P, Polli JW, Ayrton A, Ellens H, Bentz J. If the KI is defined by the free energy of binding to P-glycoprotein, which kinetic parameters define the IC50 for the Madin-Darby canine kidney II cell line overexpressing human multidrug resistance 1 confluent cell monolayer? Drug Metab Dispos. 2010 Feb;38(2):260-9. doi: 10.1124/dmd.109.029843. Epub 2009 Nov 4. PMID: 19889884.

10. Lumen AA, Li L, Li J, Ahmed Z, Meng Z, Owen A, Ellens H, Hidalgo IJ, Bentz J. Transport inhibition of digoxin using several common P-gp expressing cell lines is not necessarily reporting only on inhibitor binding to P-gp. PLoS One. 2013 Aug 16;8(8):e69394. doi: 10.1371/journal.pone.00 69394. PMID: 23976943; PMCID: PMC3745465.

11. Tran, T. T., Mittal, A., Aldinger, T., Polli, J. W., Ayrton, A., Ellens, H., Bentz, J. (2005). The elementary mass action rate constants of P-gp transport for a confluent monolayer of MDCKII-hMDR1 cells. Biophys J, 88(1), 715-738. doi: 10.1529/biophysj .104.045633

12. Tran, T. T., Mittal, A., Gales, T., Maleeff, B., Aldinger, T., Polli, J. W., Ayrton, A., Bentz, J. (2004). Exact kinetic analysis of passive transport across a polarized confluent MDCK cell monolayer modeled as a single barrier. J Pharm Sci, 93(8), 2108-2123. doi:10.1002/jps.20105

13. Butor C, Davoust J. Apical to basolateral surface area ratio and polarity of MDCK cells grown on different supports. Exp Cell Res. 1992 Nov; 203(1):115-27. doi: 10.1016/0014-4827(92)90 046-b. PMID: 1426034.

14. Whalen K, Reitzel AM, Hamdoun A. Actin polymerization controls the activation of multidrug efflux at fertilization by translocation and fine-scale positioning of ABCB1 on microvilli. Mol Biol Cell. 2012 Sep;23(18):3663-72. doi: 10.1091/mbc.E12-06-0438. Epub 2012 Aug 1. PMID: 22855533; PMCID: PMC3442413.

15. Meng Z, Ellens H, Bentz J. Extrapolation of Elementary Rate Constants of P-glycoprotein-Mediated Transport from MDCKII-hMDR1-NKI to Caco-2 Cells. Drug Metab Dispos. 2017 Feb;45 (2):190-197. doi: 10.1124/dmd.116.072140. Epub 2016 Nov 16. PMID: 27856526.

16. Meng Z, Le Marchand S, Agnani D, Szapacs M, Ellens H, Bentz J. Microvilli Morphology Can Affect Efflux Active P-Glycoprotein in Confluent MDCKII -hMDR1-NKI and Caco-2 Cell Monolayers. Drug Metab Dispos. 2017 Feb;45(2):145-151. doi: 10.1124/dmd.116.072157. Epub 2016 Nov 16. PMID: 27856525.

17. Ellens H, Meng Z, Le Marchand SJ, Bentz J. Mechanistic kinetic modeling generates system-independent P-glycoprotein mediated transport elementary rate constants for inhibition and, in combination with 3D SIM microscopy, elucidates the importance of microvilli morphology on P-glycoprotein mediated efflux activity. Expert Opin Drug Metab Toxicol. 2018 Jun;14(6):571-584. doi: 10.1080/17425255.2018.1480720. Epub 2018 Jun 7. PMID: 29788828.

18. Chaudhry A, Chung G, Lynn A, Yalvigi A, Brown C, Ellens H, O'Connor M, Lee C, Bentz J. Derivation of a System-Independent Ki for P-glycoprotein Mediated Digoxin Transport from System-Dependent IC50 Data. Drug Metab Dispos. 2018 Mar;46(3):279-290. doi: 10.1124/dmd.117.0 75606. Epub 2018 Jan 9. PMID: 29317410.

19. Bentz J, O'Connor MP, Bednarczyk D, Coleman J, Lee C, Palm J, Pak YA, Perloff ES, Reyner E, Balimane P, Brännström M, Chu X, Funk C, Guo A, Hanna I, Herédi-Szabó K, Hillgren K, Li L, Hollnack-Pusch E, Jamei M, Lin X, Mason AK, Neuhoff S, Patel A, Podila L, Plise E, Rajaraman G, Salphati L, Sands E, Taub ME, Taur JS, Weitz D, Wortelboer HM, Xia CQ, Xiao G, Yabut J, Yamagata T, Zhang L, Ellens H. Variability in P-glycoprotein inhibitory potency (IC₅₀) using various in vitro experimental systems: implications for universal digoxin drug-drug interaction risk assessment decision criteria. Drug Metab Dispos. 2013 Jul;41(7):1347-66. doi: 10.1124/dmd.112.050500. Epub 2013 Apr 25. PMID: 23620485; PMCID: PMC3684820.

20. Ellens H, Deng S, Coleman J, Bentz J, Taub ME, Ragueneau-Majlessi I, Chung SP, Herédi-Szabó K, Neuhoff S, Palm J, Balimane P, Zhang L, Jamei M, Hanna I, O'Connor M, Bednarczyk D, Forsgard M, Chu X, Funk C, Guo A, Hillgren KM, Li L, Pak AY, Perloff ES, Rajaraman G, Salphati L, Taur JS, Weitz D, Wortelboer HM, Xia CQ, Xiao G, Yamagata T, Lee CA. Application of receiver operating characteristic analysis to refine the prediction of potential digoxin drug interactions. Drug Metab Dispos. 2013 Jul;41(7):1367-74. doi: 10.1124/dmd .112.050542. Epub 2013 Apr 25. PMID: 23620486; PMCID: PMC3684818.

21. O'Connor M, Lee C, Ellens H, Bentz J. A novel application of t-statistics to objectively assess the quality of IC50 fits for P-glycoprotein and other transporters. Pharmacol Res Perspect. 2015 Feb;3(1):e00078. doi: 10.1002/prp2.78. Epub 2014 Dec 2. PMID: 25692007; PMCID: PMC4317220.