Design and testing of Hepatitis Delta Ribozymes for suppression of Chikungunya virus infection in cell cultures

Main Article Content

Mark E. Fraser Cheryl Kucharski Zoe Loh Erin Hanahoe Malcolm J. Fraser, Jr

Abstract

Chikungunya virus is an emerging pathogen with widespread distribution in regions of Africa, India, and Asia that threatens to spread into temperate climates following the introduction of its major vector, Aedes albopictus. Recent cases have been documented in Europe, the Caribbean, and the Americas. Chikungunya virus causes a disease frequently misdiagnosed as Dengue fever, with potentially life-threatening symptoms that can result in long term debilitating arthritis. There have been ongoing investigations of possible therapeutic interventions for both acute and chronic symptoms, but to date none have proven effective in reducing the severity or lasting effects of this disease. Recently, a promising vaccine candidate has received accelerated approval, indicating the importance of remedies to this emerging worldwide health threat. Nonetheless, therapeutic interventions for Chikungunya and other mosquito borne virus diseases are urgently needed yet remain elusive. The increasing risk of spread from endemic regions via human travel and commerce, coupled with the absence of a vaccine or approved therapeutic, puts a significant proportion of the world population at risk for this disease. In this report we explore the possibility of using Specific On/oFf Adapter Hepatitis Delta Virus Ribozymes as antivirals in cells infected with Chikungunya virus. The results we obtained suggest there could be some role in using these ribozyme molecules as antiviral therapies for not only Chikungunya virus, but potentially other viruses as well.

Keywords: Chikungunya, CHIKV, Hepatitis Delta, Ribozyme, Antiviral

Article Details

How to Cite
FRASER, Mark E. et al. Design and testing of Hepatitis Delta Ribozymes for suppression of Chikungunya virus infection in cell cultures. Medical Research Archives, [S.l.], v. 12, n. 8, sep. 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/5762>. Date accessed: 07 jan. 2025. doi: https://doi.org/10.18103/mra.v12i8.5762.
Section
Research Articles

References

1. Cordel H, Quatresous I, Paquet C, Couturier E. Imported cases of chikungunya in metropolitan France, April 2005 - February 2006. Euro Surveill. 2006;11(4):E060420.3. doi: 10.2807/esw.11.16.02944-en.
2. Bianco C. Dengue and Chikungunya viruses in blood donations: risks to the blood supply? Transfusion. 2008;48(7):1279-81. doi: 10.1111/j.1537-2995.2008.01806.x.
3. Appassakij H, Khuntikij P, Kemapunmanus M, Wutthanarungsan R, Silpapojakul K. Viremic profiles in asymptomatic and symptomatic chikungunya fever: a blood transfusion threat? Transfusion. 2013;53(10 Pt 2):2567-74. doi: 10.1111/j.1537-2995.2012.03960.x.
4. Ramful D, Carbonnier M, Pasquet M, et al. Mother-to-child transmission of Chikungunya virus infection. Pediatr Infect Dis J. 2007;26(9):811-5.
5. Gérardin P, Barau G, Michault A, et al. Multidisciplinary prospective study of mother-to-child chikungunya virus infections on the island of La Réunion. PLoS Med. 2008;5(3):e60. doi: 10.1371/journal.pmed.0050060.
6. Pialoux G, Gaüzère BA, Jauréguiberry S, Strobel M. Chikungunya, an epidemic arbovirosis. Lancet Infect Dis. 2007;7(5):319-27. doi: 10.1016/S1473-3099(07)70107-X.
7. Farnon EC, Sejvar JJ, Staples JE. Severe disease manifestations associated with acute chikungunya virus infection. Crit Care Med. 2008;36(9):2682-3. doi: 10.1097/CCM.0b013e3181843d94.
8. Schuffenecker I, Iteman I, Michault A, Murri S, et al. Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLoS Med. 2006;3(7):e263. doi: 10.1371/journal.pmed.0030263.
9. Saxena SK, Singh M, Mishra N, Lakshmi V. Resurgence of chikungunya virus in India: an emerging threat. Euro Surveill. 2006;11(8):E060810.2. doi: 10.2807/esw.11.32.03019-en.
10. Mavalankar D, Shastri P, Raman P. Chikungunya epidemic in India: a major public-health disaster. Lancet Infect Dis. 2007;7(5):306-7. doi: 10.1016/S1473-3099(07)70091-9.
11. Requena-Méndez A, Garcia C, Aldasoro E, et al. Cases of chikungunya virus infection in travellers returning to Spain from Haiti or Dominican Republic, April-June 2014. Euro Surveill. 2014;19(28):20853. doi: 10.2807/1560-7917.es2014.19.28.20853.
12. Lanciotti RS, Kosoy OL, Laven JJ, et al. Chikungunya virus in US travelers returning from India, 2006. Emerg Infect Dis. 2007;13(5):764-7. doi: 10.3201/eid1305.070015.
13. Hochedez P, Hausfater P, Jaureguiberry S, et al. Cases of chikungunya fever imported from the islands of the South West Indian Ocean to Paris, France. Euro Surveill. 2007;12(1):pii=679. 2738459.
14. Morrison TE. Reemergence of chikungunya virus. J Virol. 2014;88(20):11644-7. doi: 10.1128/JVI.01432-14.
15. Tsetsarkin KA, Vanlandingham DL, McGee CE, Higgs S. A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog. 2007;3(12):e201. doi: 10.1371/journal.ppat.0030201.
16. Wang E, Volkova E, Adams AP, Forrester N, Xiao SY, Frolov I, Weaver SC. Chimeric alphavirus vaccine candidates for chikungunya. Vaccine. 2008;26(39):5030-9. doi: 10.1016/j.vaccine.2008.07.054.
17. Kumar M, Sudeep AB, Arankalle VA. Evaluation of recombinant E2 protein-based and whole-virus inactivated candidate vaccines against chikungunya virus. Vaccine. 2012;30(43):6142-9. doi: 10.1016/j.vaccine.2012.07.072. Epub 2012 Aug 8.
18. Wang D, Suhrbier A, Penn-Nicholson A, et al. A complex adenovirus vaccine against chikungunya virus provides complete protection against viraemia and arthritis. Vaccine. 2011;29(15):2803-9. doi: 10.1016/j.vaccine.2011.01.108.
19. Slifka DK, Raué HP, Weber WC, et al. Development of a next-generation chikungunya virus vaccine based on the HydroVax platform. PLoS Pathog. 2022;18(7):e1010695. doi: 10.1371/journal.ppat.1010695.
20. Metz SW, Gardner J, Geertsema C, et al. Effective chikungunya virus-like particle vaccine produced in insect cells. PLoS Negl Trop Dis. 2013;7(3):e2124. doi: 10.1371/journal.pntd.0002124.
21. Livengood JA, Partidos CD, Plante K, et al. Preclinical Evaluation of a Live Attenuated Chikungunya Vaccine, Procedia in Vaccinology. 2012;6:141-149, ISSN 1877-282X, https://doi.org/10.1016/j.provac.2012.04.019.
22. de Lima Cavalcanti TYV, Pereira MR, de Paula SO, Franca RFO. A Review on Chikungunya Virus Epidemiology, Pathogenesis and Current Vaccine Development. Viruses. 2022;14(5):969. doi: 10.3390/v14050969.
23. Schneider M, Narciso-Abraham M, Hadl S, et al. Safety and immunogenicity of a single-shot live-attenuated chikungunya vaccine: a double-blind, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet. 2023;401(10394):2138-2147. doi: 10.1016/S0140-6736(23)00641-4.
24. Battisti V, Urban E, Langer T. Antivirals against the Chikungunya Virus. Viruses. 2021;13(7):1307. doi: 10.3390/v13071307.
25. Suzuki Y. Interferon-induced restriction of Chikungunya virus infection. Antiviral Res. 2023 Feb;210:105487. doi: 10.1016/j.antiviral.2022.105487.
26. López LS, Calvo EP, Castellanos JE. Deubiquitinating Enzyme Inhibitors Block Chikungunya Virus Replication. Viruses. 2023;15(2):481. doi: 10.3390/v15020481.
27. Oyewole OO, Dunnavant K, Bhattarai S, et al. A Novel Sphingosine Kinase Inhibitor Suppresses Chikungunya Virus Infection. Viruses. 2022;14(6):1123. doi: 10.3390/v14061123.
28. Nam S, Ga YJ, Lee JY, Hwang WY, Jung E, Shin JS, Chen W, Choi G, Zhou B, Yeh JY, Go YY. Radicicol Inhibits Chikungunya Virus Replication by Targeting Nonstructural Protein 2. Antimicrob Agents Chemother. 2021;65(7):e0013521. doi: 10.1128/AAC.00135-21.
29. Levi LI, Rezelj VV, Henrion-Lacritick A, et al. Defective viral genomes from chikungunya virus are broad-spectrum antivirals and prevent virus dissemination in mosquitoes. PLoS Pathog. 2021;17(2):e1009110. doi: 10.1371/journal.ppat.1009110.
30. Solignat M, Gay B, Higgs S, Briant L, Devaux C. Replication cycle of chikungunya: a re-emerging arbovirus. Virology. 2009;393(2):183-97. doi: 10.1016/j.virol.2009.07.024. Epub 2009 Sep 4.
31. Dash PK, Tiwari M, Santhosh SR, Parida M, Lakshmana Rao PV. RNA interference mediated inhibition of Chikungunya virus replication in mammalian cells. Biochem Biophys Res Commun. 2008;376(4):718-22. doi: 10.1016/j.bbrc.2008.09.040.
32. Lam S, Chen KC, Ng MM, Chu JJ. Expression of plasmid-based shRNA against the E1 and nsP1 genes effectively silenced Chikungunya virus replication. PLoS One. 2012;7(10):e46396. doi: 10.1371/journal.pone.0046396.
33. Bull JJ, Jacobson A, Badgett MR, Molineux IJ. Viral escape from antisense RNA. Mol Microbiol. 1998;28(4):835-46. doi: 10.1046/j.1365-2958.1998.00847.x.
34. Cheng GF, Lin JJ, Shi Y, et al. Dose-dependent inhibition of gynecophoral canal protein gene expression in vitro in the schistosome (Schistosoma japonicum) by RNA interference. Acta Biochim Biophys Sin (Shanghai). 2005;37(6):386-90. doi: 10.1111/j.1745-7270.2005.00058.x.
35. Parashar D, Paingankar MS, Kumar S, et al. Administration of E2 and NS1 siRNAs inhibit chikungunya virus replication in vitro and protects mice infected with the virus. PLoS Negl Trop Dis. 2013;7(9):e2405. doi: 10.1371/journal.pntd.0002405.
36. von Laer D, Hasselmann S, Hasselmann K. Gene therapy for HIV infection: what does it need to make it work? J Gene Med. 2006;8(6):658-67. doi: 10.1002/jgm.908.
37. Rossi JJ, June CH, Kohn DB. Genetic therapies against HIV. Nat Biotechnol. 2007;25(12):1444-54. doi: 10.1038/nbt1367.
38. Mitsuyasu RT, Merigan TC, Carr A, et al. 2009. Phase 2 gene therapy trial of an anti-HIV ribozyme in autologous CD34+ cells. Nat Med. 2009;15(3):285-92. doi: 10.1038/nm.1932.
39. Nawtaisong P, Keith J, Fraser T, et al. Effective suppression of Dengue fever virus in mosquito cell cultures using retroviral transduction of hammerhead ribozymes targeting the viral genome. Virol J. 2009;6:73. doi: 10.1186/1743-422X-6-73.
40. Carter JR, Keith JH, Barde PV, Fraser TS, Fraser MJ Jr. Targeting of highly conserved Dengue virus sequences with anti-Dengue virus trans-splicing group I introns. BMC Mol Biol. 2010;11:84. doi: 10.1186/1471-2199-11-84.
41. Carter JR, Keith JH, Fraser TS, et al. Effective suppression of dengue virus using a novel group-I intron that induces apoptotic cell death upon infection through conditional expression of the Bax C-terminal domain. Virol J. 2014;11:111. doi: 10.1186/1743-422X-11-111.
42. Carter JR, Taylor S, Fraser TS, Kucharski CA, Dawson JL, Fraser MJ Jr. Suppression of the Arboviruses Dengue and Chikungunya Using a Dual-Acting Group-I Intron Coupled with Conditional Expression of the Bax C-Terminal Domain. PLoS One. 2015;10(11):e0139899. doi: 10.1371/journal.pone.0139899.
43. Mishra P, Furey C, Balaraman V, Fraser MJ. Antiviral Hammerhead Ribozymes Are Effective for Developing Transgenic Suppression of Chikungunya Virus in Aedes aegypti Mosquitoes. Viruses. 2016;8(6):163. doi: 10.3390/v8060163.
44. Netter HJ, Barrios MH, Littlejohn M, Yuen LKW. Hepatitis Delta Virus (HDV) and Delta-Like Agents: Insights Into Their Origin. Front Microbiol. 2021;12:652962. doi: 10.3389/fmicb.2021.652962.
45. Bergeron LJ, Ouellet J, Perreault JP. Ribozyme-based gene-inactivation systems require a fine comprehension of their substrate specificities; the case of delta ribozyme. Curr Med Chem. 2003;10(23):2589-97. doi: 10.2174/0929867033456486.
46. Kato Y, Kuwabara T, Warashina M, Toda H, Taira K. Relationships between the activities in vitro and in vivo of various kinds of ribozyme and their intracellular localization in mammalian cells. J Biol Chem. 2001;276(18):15378-85. doi: 10.1074/jbc.M010570200.
47. D'Anjou F, Bergeron LJ, Larbi NB, et al. Silencing of SPC2 expression using an engineered delta ribozyme in the mouse betaTC-3 endocrine cell line. J Biol Chem. 2004; 279(14):14232-9. doi: 10.1074/jbc.M310632200.
48. Sheng J, Al-Anouti F, Ananvoranich S. Engineered delta ribozymes can simultaneously knock down the expression of the genes encoding uracil phosphoribosyltransferase and hypoxanthine-xanthine-guanine phosphoribosyltransferase in Toxoplasma gondii. Int J Parasitol. 2004;34(3):253-63. doi: 10.1016/j.ijpara.2003.11.005.
49. Bergeron LJ, Perreault JP. Target-dependent on/off switch increases ribozyme fidelity. Nucleic Acids Res. 2005;33(4):1240-8. doi: 10.1093/nar/gki278.
50. Lévesque MV, Lévesque D, Brière FP, Perreault JP. Investigating a new generation of ribozymes in order to target HCV. PLoS One. 2010;5(3):e9627. doi: 10.1371/journal.pone.0009627.
51. Deschênes P, Lafontaine DA, Charland S, Perreault JP. Nucleotides -1 to -4 of hepatitis delta ribozyme substrate increase the specificity of ribozyme cleavage. Antisense Nucleic Acid Drug Dev. 2000;10(1):53-61. doi: 10.1089/oli.1.2000.10.53.
52. Motard J, Rouxel R, Paun A, von Messling V, Bisaillon M, Perreault JP. A novel ribozyme-based prophylaxis inhibits influenza A virus replication and protects from severe disease. PLoS One. 2011;6(11):e27327. doi: 10.1371/journal.pone.0027327.
53. Perrotta AT, Shih I, Been MD. Imidazole rescue of a cytosine mutation in a self-cleaving ribozyme. Science. 1999;286(5437):123-6. doi: 10.1126/science.286.5437.123.
54. Wrzesinski, J., Wichłacz, A., Nijakowska, D., Rebowska, B., Nawrot, B., Ciesiołka, J. Phosphate residues of antigenomic HDV ribozyme important for catalysis that are revealed by phosphorothioate modification† New J. Chem. 2010;34:1018-1026. https://doi.org/10.1039/B9NJ00727J
55. Ramakrishnan MA. Determination of 50% endpoint titer using a simple formula. World J Virol. 2016;5(2):85-6. doi: 10.5501/wjv.v5.i2.85.
56. Bergeron LJ, Reymond C, Perreault JP. Functional characterization of the SOFA delta ribozyme. RNA. 2005;11(12):1858-68. doi: 10.1261/rna.2112705.
57. Joubert PE, Werneke SW, de la Calle C, Guivel-Benhassine F, Giodini A, Peduto L, Levine B, Schwartz O, Lenschow DJ, Albert ML. Chikungunya virus-induced autophagy delays caspase-dependent cell death. J Exp Med. 2012;209(5):1029-47. doi: 10.1084/jem.20110996.
58. Lévesque D, Choufani S, Perreault JP. Delta ribozyme benefits from a good stability in vitro that becomes outstanding in vivo. RNA. 2002;8(4):464-77. doi: 10.1017/s1355838202020289.
59. Wang CX, Lu YQ, Qi P, Chen LH, Han JX. Efficient inhibition of hepatitis B virus replication by hepatitis delta virus ribozymes delivered by targeting retrovirus. Virol J. 2010;7:61. doi: 10.1186/1743-422X-7-61.
60. Lainé S, Scarborough RJ, Lévesque D, et al. In vitro and in vivo cleavage of HIV-1 RNA by new SOFA HDV ribozymes and their potential to inhibit viral replication. RNA Biol. 201;8(2):343-53. doi: 10.4161/rna.8.2.15200.
61. Lévesque MV, Rouleau SG, Perreault JP. Selection of the most potent specific on/off adaptor-hepatitis delta virus ribozymes for use in gene targeting. Nucleic Acid Ther. 2011;21(4):241-52. doi: 10.1089/nat.2011.0301.
62. Traber GM, Yu AM. RNAi-Based Therapeutics and Novel RNA Bioengineering Technologies. J Pharmacol Exp Ther. 2023;384(1):133-154. doi: 10.1124/jpet.122.001234.
63. Yu AM, Jian C, Yu AH, Tu MJ. RNA therapy: Are we using the right molecules? Pharmacol Ther. 2019;196:91-104. doi: 10.1016/j.pharmthera.2018.11.011.
64. Sudeep AB, Vyas PB, Parashar D, Shil P. Differential susceptibility & replication potential of Vero E6, BHK-21, RD, A-549, C6/36 cells & Aedes aegypti mosquitoes to three strains of chikungunya virus. Indian J Med Res. 2019;149(6):771-777. doi: 10.4103/ijmr.IJMR_453_17.