Boolean Algebra (Mathematical Logic) for Grading of Toxicities Associated with Cellular Immune Therapy

Main Article Content

Gerhard Zugmaier Franco Locatelli

Abstract

In clinical practice toxicity grading is guided by scales such as the Common Terminology Criteria for Adverse Events. These scales assign grades (usually from 1 to 5) to various toxicities based on severity. Cellular Immunotherapies, whose mechanism of action incudes directing T cells to target cells can be associated with special side effects such as cytokine release syndrome or neurologic toxicity. The American Society for Transplantation and Cellular Therapy has developed an easily applicable, logical and concise system to categorize and grade cytokine release syndrome and neurologic toxicity. Cytokine release syndrome is a systemic inflammatory response that can occur after immune cell therapy.  Neurologic toxicity can also occur after immune cell therapy. It can include encephalopathy, delirium, headache, anxiety, sleep disorder, dizziness, aphasia, motor dysfunction, tremor, ataxia, seizure, dyscalculia, myoclonus. Boolean algebra can be used to automate and standardize this grading process by translating it into a mathematical framework that combines different clinical signs and symptoms.  In this study we apply Boolean algebra as mathematical tool to define and grade Cytokine release syndrome and neurologic toxicity by the criteria of the American Society for Transplantation and Cellular Therapy.

Article Details

How to Cite
ZUGMAIER, Gerhard; LOCATELLI, Franco. Boolean Algebra (Mathematical Logic) for Grading of Toxicities Associated with Cellular Immune Therapy. Medical Research Archives, [S.l.], v. 12, n. 10, oct. 2024. ISSN 2375-1924. Available at: <https://esmed.org/MRA/mra/article/view/5765>. Date accessed: 03 dec. 2024. doi: https://doi.org/10.18103/mra.v12i10.5765.
Section
Research Articles

References

1. Shortliffe EH, Cimino JJ, eds. *Biomedical Informatics: Computer Applications in Health Care and Biomedicine*. Springer; 2013.
2. Zugmaier G, Locatelli F. Application of Mathematical Logic for Immunophenotyping of B-Cell Precursor Acute Lymphoblastic Leukemia (BCP-ALL). *Biomed Genet Genom*. 2019;4:1-3. doi:10.15761/bgg.1000148
3. Zugmaier G, Locatelli F. Application of Mathematical Logic for Cytogenetic Definition and Risk Stratification of B-Cell Precursor Acute Lymphoblastic Leukemia (BCP-ALL). *Med Res Arch*. 2021;9(2):1-8. doi:10.18103/mra.v9i2.2328
4. Zugmaier G, Kerkmann S, Locatelli F. Application of Boolean Algebra for Definition of Myeloid Neoplasms. *Med Res Arch*. 2023;11(1). doi:10.18103/mra.v11i1.3456
5. Zugmaier G. Boolean Algebra for Laboratory Diagnostics in Medicine. *J Clin Res Rep*. 2024;16(2).
6. Miller RA. Medical Diagnostic Decision Support Systems—Past, Present, and Future: A Threaded Bibliography and Brief Commentary. *J Am Med Inform Assoc*. 1994;1(1):8-27.
7. Gonzalez RC, Woods RE. *Digital Image Processing*. 3rd ed. Pearson/Prentice Hall; 2008. ISBN: 013168728X.
8. Dougherty ER. *An Introduction to Morphological Image Processing*. SPIE Press; 1992.
9. Zugmaier G. Boolean Algebra With Modified Venn Diagrams for Definition of Lymphoma. *Clin Oncol*. 2024;7(9):1-4.
10. Lee DW, Santomasso BD, Locke FL, et al. ASTCT Consensus Grading for Cytokine Release Syndrome and Neurologic Toxicity Associated With Immune Effector Cells. *Biol Blood Marrow Transplant*. 2019;25(4):625-638. doi:10.1016/j.bbmt.2018.12.758
11. Maram R, Howe Jv, Kong D, et al. Frequency-Domain Ultrafast Passive Logic: NOT and XNOR Gates. *Nat Commun*. 2020;11:5839. doi:10.1038/s41467-020-19544-9
12. Melter RA, Rudeanu S. Linear Equations and Interpolation in Boolean Algebra. *Linear Algebra Appl*. 1984;57:31-40.
13. López-Peña L, García-Cañibano J. Use of Boolean Logic to Categorize and Assess Severity in Clinical Trials. *J Clin Trials*. 2014;7(2):145-152.
14. Wieland SC, Schenkel SF. Boolean Operations for Medical Decision Making: A Primer for Evaluating Complex Diagnostic Tests. *Stat Med*. 2003;22(18):2743-2761.
15. Zhou X, Lee M, Lussier YA. Adverse Drug Event Detection Using Boolean Learning. *J Biomed Inform*. 2014;52:145-154.
16. Zhou X, Lee M, Lussier YA. Adverse Drug Event Detection Using Boolean Learning. *J Biomed Inform*. 2014;52:145-154.
17. He Q, Macauley M, Davies R. Dynamics of Complex Boolean Networks. In: Robeva RS, ed. *Algebraic and Discrete Mathematical Methods for Modern Biology*. Elsevier; 2015:65-91. doi:10.1016/b978-0-12-801213-0.00004-6
18. Macauley M, Young N. The Case for Algebraic Biology: From Research to Education. *Bull Math Biol*. 2020;82(9):115. doi:10.1007/s11538-020-00789-w
19. Varadan V, Anastassiou D. Inference of Disease-Related Molecular Logic From Systems-Based Microarray Analysis. *PLoS Comput Biol*. 2006;2(6):585-597. doi:10.1371/journal.pcbi.0020068.eor
20. DiAndreth B, Hamburger AE, Xu H, Kamb A. The TMOD Cellular Logic Gate as a Solution for Tumor-Selective Immunotherapy. *Clin Immunol*. 2022;241:1-8. doi:10.1016/j.clim.2022.109030
21. Riede U, Moore GW, Williams MB. Quantitative Pathology by Means of Symbolic Logic. *CRC Crit Rev Toxicol*. 1983;11(4):279-332. doi:10.3109/10408448309037457
22. Palma A, Iannuccelli M, Rozzo I, et al. Integrating Patient-Specific Information Into Logic Models of Complex Diseases: Application to Acute Myeloid Leukemia. *J Pers Med*. 2021;11(2):117. doi:10.3390/jpm11020117
23. Matthäus F, Matthäus S, Harris S, Hillen T. *The Art of Theoretical Biology*. Springer; 2020.
24. Cajori F. *A History of Mathematical Notations: Two Volumes Bound as One*. Dover Publications; 1993.
25. Higham NJ. *Accuracy and Stability of Numerical Algorithms*. SIAM; 2002.
26. Hoffmann DW. *Grundlagen der Technischen Informatik*. 5th ed. Carl Hanser Verlag; 2016.
27. Knuth DE. *The Art of Computer Programming, Volume 1: Fundamental Algorithms*. Addison-Wesley; 1997.
28. Knuth DE. *The Art of Computer Programming, Volume 1: Fundamental Algorithms*. Addison-Wesley; 1997.
29. Shannon CE. A Symbol of Analysis of Relay and Switching Circuits. Massachusetts Institute of Technology; 1940.
30. Grattan-Guinness I. Mathematics and Symbolic Logics: Some Notes on an Uneasy Relationship. *Hist Philos Logic*. 1999;20(3-4):159-167. doi:10.1080/01445349950044116
31. Huntington EV. The Postulates of Boolean Algebra. *Trans Am Math Soc*. 1933;35(1):274-304.
32. Kleene SC. *Introduction to Metamathematics*. North-Holland Publishing Company; 1952.
33. Leitgeb H. Hype: A System of Hyperintensional Logic (With an Application to Semantic Paradoxes). *J Philos Logic*. 2019;48(2):305-405. doi:10.1007/s10992-018-9467-0
34. Steffens HJ, Muehlmann K, Zoellner C. *Mathematik für Informatiker für Dummies*. Wiley-VCH; 2019.