A multifaceted bioactive resource of stingless bees: Unlocking the therapeutic anti- antimicrobial-resistance (anti-AMR) potential of pot-pollen
Main Article Content
Abstract
Pot-pollen, a probiotic processed by stingless bees, has gained attention for its nutraceutical properties and pleasant sour taste. The aim of this editorial is to illustrate the state-of-the-art of pot-pollen research with a bibliometric overview using the Scopus database to value the experimental bioactivity (antimicrobial, antioxidant, anti-inflammatory, and anticancer) of pot-pollen, and the standards for quality control and safety of pot-pollen legislation, considered mandatory for clinical applications of this highly variable natural product. The bibliometric analysis since 2014 revealed a growing interest in pot-pollen research, with a focus on the following academic disciplines: Agricultural and Biological Sciences, Engineering, Biochemistry, Genetics and Molecular Biology, and Environmental Science. Nevertheless, the lack of medicine in subject areas and clinical research in medical journals, indicates a necessity for further studies on the potential applications of pot-pollen in human health. In conclusion, pot-pollen emerges as a bioactive material with health benefits, and a novel synergism with antibiotics reveals its therapeutic anti-antimicrobial-resistance (anti-AMR) potential, deserving further research to fully elucidate its potential in modern medicine.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Camargo JMF. (2013). Historical biogeography of the Meliponini (Hymenoptera, Apidae, Apinae) of the Neotropical region. 19-34 pp. In P Vit, SRM Pedro, D Roubik (editors), Pot-honey: A Legacy of Stingless Bees. Springer; New York, USA; 654 pp.
3. Vit P, Pedro SRM, Roubik D (editors). (2013). Pot-honey: A Legacy of Stingless Bees. Springer; New York, USA; 654 pp.
4. Vit P, Pedro SRM, Roubik DW (editors). (2018). Pot-pollen in Stingless Bee Melittology. Springer Nature; Cham, Switzerland; 481 pp.
5. Vit P, Bankova V, Popova M, Roubik DW (editors). (2024). Stingless Bee Nest Cerumen and Propolis. Springer Nature; Cham, Switzerland; Vol 1 539 pp., Vol 2 505 pp.
6. Vit P, Meccia G. (2024). Memorias del 2024 Taller Internacional de Meliponicultura Mustafa. APIBA-ULA; Mérida, Venezuela; 71 pp. http://www.saber.ula.ve/handle/123456789/50838
7. Vit P. (2024). Gastronomía Meliponomía Atures. APIBA-ULA; Mérida, Venezuela; 60 pp. https://unu.edu/sites/default/files/2024-08/Gastronomia%20Meliponomia%20Atures%205.pdf
8. Alves RMO, Carvalho CAL. (2018). Pot-pollen 'samburá' marketing in Brazil and suggested legislation, pp. 435–443. In P Vit, SRM Pedro, DW Roubik (editors), Pot-pollen in Stingless Bee Melittology. Springer Nature; Cham, Switzerland; 481 pp. Doi: 10.1007/978-3-319-61839-5_31
9. Falagas ME, Pitsouni EI, Malietzis GA, Pappas G. Comparison of PubMed, Scopus, Web of Science, and Google Scholar: Strengths and weaknesses. FASEB Journal 2008;22, 338–342. Doi: 10.1096/fj.07-9492LSF
10. Chuttong B, Phongphisutthinant R, Sringarm K, Burgett M, Barth OM. (2018). Nutritional composition of pot-pollen from four species of stingless bees (Meliponini) in southeast Asia. pp. 313-324. In P Vit, SRM Pedro, DW Roubik (editors), Pot-pollen in Stingless Bee Melittology. Springer Nature; Cham, Switzerland; 481 pp. Doi: 10.1007/978-3-319-61839-5_22
11. Pérez-Pérez E, Sulbarán-Mora M, Barth OM, Massaro CF, Vit P. (2018). Bioactivity and botanical origin of Austroplebeia and Tetragonula Australian pot-pollen. pp. 377– 390. In P Vit, SRM Pedro, DW Roubik (editors), Pot-pollen in Stingless Bee Melittology. Springer Nature; Cham, Switzerland; 481 pp.
12. Sulbarán-Mora M, Peña-Vera M, Pérez-Pérez E, Vit P. (2018). Antibacterial activity of ethanolic extracts of pot-pollen from eight meliponine species from Venezuela. pp. 391– 399. In P Vit, SRM Pedro, DW Roubik (editors), Pot-pollen in Stingless Bee Melittology. Springer Nature; Cham, Switzerland; 481 pp. Doi: 10.1007/978-3-319-61839-5_28
13. Belina-Aldemita MD, Schreiner M, D'Amico S. Characterization of phenolic compounds and antioxidative potential of pot-pollen produced by stingless bees (Tetragonula biroi Friese) from the Philippines. J Food Biochem. 2020;44(1): e13102. Doi: 10.1111/jfbc.13102
14. Rebelo K.S., Cazarin C.B.B., Iglesias A.H., Stahl M.A., Kristiansen K., Carvalho-Zilse G.A., Grimaldi R., Reyes F.G.R., Danneskiold-Samsøe N.B., Júnior M.R.M. Nutritional composition and bioactive compounds of Melipona seminigra pot-pollen from Amazonas, Brazil. J Sci Food Agric. 2021;101(12):4907– 4915. Doi: 10.1002/jsfa.11134
15. Omar WAW, Azhar NA, Fadzilah NH, Kamal NNSNM. Bee pollen extract of Malaysian stingless bee enhances the effect of cisplatin on breast cancer cell lines. Asian Pac J Trop Biomed. 2016;6, 265–269. Doi: 10.1016/j.apjtb.2015.12.011
16. Lopes AJO, Vasconcelos CC, Garcia JBS, Dória Pinheiro MS, Pereira FAN, Camelo DS, Morais SV, Freitas JRB, Rocha CQD, Ribeiro MNS, Cartágenes MDSS. Anti-inflammatory and antioxidant activity of pollen extract collected by Scaptotrigona affinis postica: In silico, in vitro, and in vivo studies. Antioxidants 2020;9, 103. Doi: 10.3390/antiox9020103
17. Rebelo KS, Nunez CEC, Cazarin CBB, Maróstica Júnior MR, Kristiansen K, Danneskiold-Samsøe NB. Pot-pollen supplementation reduces fasting glucose and modulates the gut microbiota in high-fat/high-sucrose fed C57BL/6 mice. Food Funct. 2022;13(7):3982-3992.
Doi: 10.1039/d1fo03019a
18. Araque M, Vit P. Evaluation of the potential synergistic effect of Tetragonisca angustula pot-pollen with amikacin and meropenem against extensively drug-resistant bacteria of clinical origin. Med Res Arch. 2024;12(9). Doi: 10.18103/mra.v12i9.0000.
19. WHO. (2022). WHO Global antimicrobial resistance and use surveillance system (GLASS) report 2022. Geneva: World Health Organization; 71 pp.
20. WHO. (2024). WHO Bacterial Priority Pathogens List, 2024: bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance. Geneva: World Health Organization; 56 pp.
21. Barbosa RN, Bezerra J, Santos JEF, Moura JC. Home sweet home: Yeasts living in substrates related to Melipona scutellaris in the Brazilian Atlantic Forest. Sociobiology 2024;71 (2): e10359. Doi: 10.13102/sociobiology.v71i2.10359.
22. Vit P, Medina M, Enriquez ME. Quality standards for medicinal uses of Meliponinae honey in Guatemala, Mexico and Venezuela. Bee World 2004;85,2–5. https://doi.org/10.108 0/0005772X.2004.11099603
23. ADAB. (2014). Agência de Defesa Agropecuária da Bahia. ADAB. Portaria ADAB n° 207 de 21/11/2014 Regulamento Técnico de Identidade e Qualidade do Mel de Abelha Social sem Ferrão, do Gênero 2020.
24. CODEX STAN. (1981). Standard for Honey. CXS 12-1981 Adopted in 1981. Revised in 1987, 2001. Amended in 2019. Codex Alimentarius. FAO. WHO. International Food Standards. pp. 1–8 (World-wide standard) Rev. 1 (1987).
25. Department of Standards Malaysia. (2017). Kelulut (Stingless bee) honey – Specification 2683:2017 https://es.scribd.com/document/398215369/Kelulut-Stingless-bee-honey-Specification
26. Secretaría de Regulación y Gestión Sanitaria y Secretaría de Alimentos y Bioeconomía. (2019). Miel de Tetragonisca fiebrigi (yateí). Resolución Conjunta 17/2019 RESFC-2019-17-APNSRYGS#MSYDS 02/05/2019 N° 29258/19 v. 02/05/2019 https://www.boletinoficial.gob.ar/detalleAviso/primera/206764/20190502
27. Vit P, Pedro SRM, Meléndez V, Frisone V. (2018). Diversity of stingless bees in Ecuador, pot-pollen standards, and meliponiculture fostering a living museum for Meliponini of the world. pp. 207–227. In P Vit, SRM Pedro, DW Roubik (editors), Pot-pollen in Stingless Bee Melittology. Springer Nature; Cham, Switzerland; 481 pp. Doi: 10.1007/978-3-319-61839-5_15
28. International Standard. (2023). Bee pollen—Specifications. ISO/FDIS 24382:2023. Secretariat: SAC. ISO/TC 34/SC 19. Secretariat: SAC.
29. Aylanc V, Falcão SI, Vilas-Boas M. Bee pollen and bee bread nutritional potential: Chemical composition and macronutrient digestibility under in vitro gastrointestinal system. Food Chem. 2023; 413, 135597. Doi: 10.1016/j.foodchem.2023.135597
30. Flavia Massaro C, Villa TF, Hauxwell C. (2018). Metabolomics analysis of pot-pollen from three species of Australian stingless bees (Meliponini). pp. 401– 417. In P Vit, SRM Pedro, DW Roubik (editors), Pot-pollen in Stingless Bee Melittology. Springer Nature; Cham, Switzerland; 481 pp. Doi: 10.1007/978-3-319-61839-5_29
31. Belina-Aldemita MaD, Fraberger V, Schreiner M, Domig KJ, D'Amico S. Safety aspects of stingless bee pot-pollen from the Philippines [Sicherheitsaspekte von cerumen-pollen stachelloser Bienen von den Philippinen] Bodenkultur, 2020;71(2):87–100. Doi: 10.2478/boku-2020-0009
32. Alves RM, da Silva Sodré G, Carvalho CAL. (2018). Chemical, microbiological, and palynological composition of the "samburá" Melipona scutellaris pot-pollen. pp. 349–360. In P Vit, SRM Pedro, DW Roubik (editors), Pot-pollen in Stingless Bee Melittology. Springer Nature; Cham, Switzerland; 481 pp. Doi: 10.1007/978-3-319-61839-5_25
33. Vit P, Ricciardelli D’Albore G, Barth OM, Peña-Vera M, Pérez-Pérez E. (2018). Characterization of pot-pollen from Southern Venezuela. pp. 361–375. In P Vit, SRM Pedro, DW Roubik (editors), Pot-pollen in Stingless Bee Melittology. Springer Nature; Cham, Switzerland; 481 pp. Doi: 10.1007/978-3-319-61839-5_26