Evaluation of the potential synergistic effect of Tetragonisca angustula pot-pollen with amikacin and meropenem against extensively drug-resistant bacteria of clinical origin
Main Article Content
Abstract
Background. The combination of natural products like the bioactive stingless bee nest materials with conventional antibiotics offers a promising strategy to enhance antibacterial efficacy and contend with antimicrobial resistance.
Objective. This study evaluated the potential synergistic effects of Tetragonisca angustula pot-pollen extract combined with amikacin and meropenem against six extensively drug-resistant Gram-negative bacteria of clinical origin.
Methodology. The inhibitory and bactericidal tests of T. angustula pot-pollen extract, amikacin, and meropenem were determined by minimum inhibitory concentration and minimum bactericidal concentration. The checkerboard method was employed to quantify the effect of T. angustula pot-pollen extract in combination with the selected antibiotics. Fractional inhibitory concentration indices were calculated to determine the interactions between T. angustula pot-pollen extract-amikacin and T. angustula pot-pollen extract-meropenem.
Results. The ethanolic extract of T. angustula pot-pollen showed inhibitory activity against all strains tested, with ranging minimum inhibitory concentration from 16 to 128 mg/ml. The minimum bactericidal concentration remained within two ranges above the minimum inhibitory concentration. Based on the fractional inhibitory concentration indices values, 12 interactions were evaluated (T. angustula pot-pollen extract-amikacin and T. angustula pot-pollen extract-meropenem). Of these, 9 (75%) exhibited total synergism, while 3 (25%) showed partial synergistic interactions or addition effects. The combination of T. angustula pot-pollen extract-amikacin indicated a two-to three-fold reduction in the minimum inhibitory concentration for Enterobacterales and Pseudomonadales. The T. angustula pot-pollen extract-meropenem association showed a notable synergistic effect on Klebsiella pneumoniae, Enterobacter ludwigii, Pseudomonas aeruginosa, and Acinetobacter baumannii, with a fractional inhibitory concentration indices ranging from 0.313 to 0.380.
Conclusion. These results revealed that T. angustula pot-pollen extract may enhance the efficacy of existing antibiotics against extensively drug-resistant Gram-negative bacteria, offering a promising alternative in the fight against antimicrobial resistance. Further research is necessary to elucidate clinical applications and underlying mechanisms of the observed synergistic interactions.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet. 2022;399(10325):P629-655. Doi: 10.1016/S0140-6736(21)02724-0
3. WHO Bacterial Priority Pathogens List, 2024: bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance. Geneva: World Health Organization; 2024.
4. Mancuso G, Midiri A, Gerace E, Biondo C. Bacterial Antibiotic resistance: the most critical pathogens. Pathogens. 2021;10:1310. Doi: 10.3390/pathogens10101310
5. Bhattacharya T, Kaur J, Kaur G, Rasane P, Agrawal P, Bhadariya V. Bee pollen as a natural antimicrobial agent: a comprehensive review. J Food Chem Nanotechnol. 2023;9(S1): S154-S160. Doi: 10.17756/jfcn.2023-s1-020
6. Pełka K, Otłowska O, Worobo RW, Szweda P. Bee bread exhibits higher antimicrobial potential compared to bee pollen. Antibiotics. 2021;10:125. Doi: 10.3390/antibiotics10020125
7. Sulbarán-Mora M, Pérez-Pérez E, Vit P. Antibacterial activity of ethanolic extracts of pot-pollen produced by eight meliponine species from Venezuela. In Vit P Silvia R.M. Pedro SRM, Roubik DW. Editors Pot-pollen in stingless bee melittology. Ed. Springer International Publishing. 2018; 391-400. Doi:10.1007/978-3-319-61839-5
8. Didaras NA, Karatasou K, Dimitriou TG, Amoutzias GD, Mossialos D. Antimicrobial activity of bee-collected pollen and beebread: state of the art and future perspectives. Antibiotics. 2020;9: 811. Doi: 10.3390/antibiotics9110811
9. Vit P, Pedro SRM, Roubik DW (editors). Pot-pollen in stingless bee melittology, Springer Nature; Cham, Switzerland; 2018. 481 pp.
10. Engel MS, Rasmussen C, Ayala R, de Oliveira FF. Stingless bee classification and biology (Hymenoptera, Apidae): a review, with an updated key to genera and subgenera. Zookeys. 2023; 1172:239–319. https://zookeys.pensoft.net/article/104944/list/1/
11. Soares de Arruda VA, Vieria dos Santos A, Figueiredo Sampaio D, da Silva Araújo E, de Castro Peixoto AL, Estevinho LM, Bicudo de Almeida-Muradian L. Brazilian bee pollen: phenolic content, antioxidant properties and antimicrobial activity. J Apic Res. 2021;60:775-783. Doi: 10.1080/00218839.2020.1840854
12. Acaroz U, Kurek-Gorecka A, Olczyk P, Tas N, Ali A, Paramanya A, Balyan P, Noor A, Kamaraj S, Malekifard F, Hosseini A, Istanbullugil FR, Arslan-Acaroz D, Asma ST, Segueni N, Ceylan AB, Jin X. The role of bee products in the control of antimicrobial resistance and biofilm formation. Kafkas Univ Vet Fak Derg. 2024; 30(2): 131-153. Doi: 10.9775/kvfd.2023.30966
13. Betta E, Contreras RR, Moreno E, Pedro SRM, Khomenko I, Vit P. (2024). Venezuelan stingless bee Tetragonisca angustula (Latreille, 1811) pot-pollen and cerumen pollen pot volatile organic compound VOC profiles by HS-SPME/GC-MS. 183–185 pp. In Centre Fondazione Edmund Mach, (Ed.). Direct Injection Food Flavour Analytics (DIFFA). (pp. 1-197). Fondazione Edmund Mach.
14. Guedes BN, Krambeck K, Durazzo A, Lucarini M, Santini A, Oliveira MBPP, Fathi F, Souto EB. Natural antibiotics against antimicrobial resistance: sources and bioinspired delivery systems. Braz J Microbiol. 2024. Doi: 10.1007/s42770-024-01410-1
15. Quijada-Martínez P, Flores-Carrero A, Labrador I, Millán Y, Araque M. Molecular characterization of multidrug-resistant Gram-negative bacilli producing catheter–associated urinary tract infections in internal medicine services of a Venezuelan University Hospital. Austin J Infect Dis. 2017; 4(1): id1030. https://austinpublishinggroup.com/infectious-diseases/fulltext/ajid-v4-id1030.php
16. Millán Y, Araque M, Ramírez A. Distribución de grupos filogenéticos, factores de virulencia y susceptibilidad antimicrobiana en cepas de Escherichia coli uropatógena. Rev Chil Infectol. 2020;37(2):117-123. Doi: 10.4067/s0716-10182020000200117
17. Flores-Carrero A, Labrador I, Paniz-Mondolfi A, Peaper DH, Towle D, Araque M. Nosocomial outbreak of ESBL-producing Enterobacter ludwigii coharbouring CTX-M-8, SHV-12 and TEM-15 in a neonatal intensive care unit in Venezuela. J Glob Antimicrob Resist. 2016;7:114-118. Doi: 10.1016/j.jgar.2016.08.006
18. Serrano-Uribe R, Flores-Carrero A, Labrador I, Araque M. Epidemiología y caracterización molecular de bacilos Gram negativos multirresistentes productores de sepsis intrahospitalaria en pacientes adultos. Avan Biomed. 2016;5(1):26-37. http://www.redalyc.org/articulo.oa?id=331345748005
19. Flores-Carrero A, Paniz-Mondolfi A, Araque M. Nosocomial bloodstream infection caused by Pseudomonas alcaligenes in a preterm neonate from Mérida, Venezuela. J Clin Neonatol. 2016; 5(2):131-133. Doi: 10.4103/2249-4847.179932
20. El Hindawi G, Varela-Rangel YY, Araque M. Photoinactivation of extensively drug-resistant Gram negative bacteria from healthcare-associated infections in Venezuela. Intern J Res Med Sci. 2023;11(9):3175-3182. Doi: 10.18203/2320-6012.ijrms20232764
21. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; 34th edn. Informational Supplement. CLSI Document M100-S27. Clinical and Laboratory Standards Institute, Wayne, PA.USA. 2024.
22. Bellio P,Fagnani L, Nazzicone L, Celenza G. New and simplified method for drug combination studies by checkerboard assay. MethodsX. 2021; 8:101543. Doi: 10.1016/j.mex.2021.101543.
23. Feng W. Yang J. Interpretation of fractional inhibitory concentration index (FICI). Bio-protocol preprint. 2023. bio-protocol.org/prep2404.
https://bio-protocol.org/exchange/preprintdetail?id=2404&type=3
24. Borges A, Ferreira C, Saavedra MJ, Simões M. Antibacterial activity and mode of action of ferulic and gallic acids against pathogenic bacteria. Microb Drug Rest. 2013;19(4): 256–265. Doi: 10.1089/mdr.2012.0244
25. Thebti A, Meddeb A, Ben Salem I, Bakary C, Ayari S, Rezgui F, Essafi-Benkhadir K, Boudabous A, Ouzari HI. Antimicrobial activities and mode of flavonoid actions. Antibiotics. 2023;12:225.
Doi: 10.3390/antibiotics12020225
26. Liu M-H, Otsuka N, Noyori K, Shiota S, Ogawa W, Kuroda T, Hatano T, Tsuchiya T. Synergistic effect of kaempferol glycosides purified from Laurus nobilis and fluoroquinolones on methicillin-resistant Staphylococcus aureus. Biol Pharm Bull. 2009;32(3):489-492. Doi: 10.1248/bpb.32.489
27. Tian QM, Wei SM, Su HR, Zheng SM, Xu SY, Liu MJ, Bo RN, Li JG. Bactericidal activity of gallic acid against multi-drug resistance Escherichia coli. Microb Pathog. 2022;173:105824.
Doi: 10.1016/j.micpath.2022.105824.
28 Camargo JMF. (2013). Historical biogeography of the Meliponini (Hymenoptera, Apidae, Apinae) of the Neotropical region. 19-34 pp. In P Vit, SRM Pedro, D Roubik (Eds.), Pot-honey: A Legacy of Stingless Bees, (pp. 1-654). Springer.
29. Rebelo KS, Nunez CEC, Cazarin CBB, Maróstica Júnior MR, Kristiansen K, Danneskiold-Samsøe NB. Pot-pollen supplementation reduces fasting glucose and modulates the gut microbiota in high-fat/high-sucrose fed C57BL/6 mice. Food Funct. 2022;13(7):3982-3992. Doi: 10.1039/d1fo03019a. PMID: 35311861.
30. Brudzynski, K. Honey as an ecological reservoir of antibacterial compounds produced by antagonistic microbial interactions in plant nectars, honey and honey bee. Antibiotics. 2021;10, 551. Doi: 10.3390/antibiotics10050551
31. Kurtzman, C.P., Price N.P.J., Ray, K.J., Kuo, T.M. Production of sophorolipid biosurfactants by multiple species of the Starmerella (Candida) bombicola yeast clade. FEMS Microbiol. Lett. 2010;311, 140–146. Doi:10.1111/j.1574-6968.2010.02082.x
32. Santos, A.R.O., Leon, M.P., Barros, K.O., Freitas, L.F.D., Hughes, A.F.S., Morais, P.B., Lachance, M.A., Rosa, C. Starmerella camargoi f.a., sp.nov., Starmerella ilheusensis f.a., sp. nov., Starmerella litoralis f.a., sp. nov., Starmerella opuntiae f.a., sp. nov., Starmerella roubikii f.a., sp. nov. and Starmerella vitae f.a., sp. nov., isolated from flowers and bees, and transfer of related Candida species to the genus Starmerella as new combinations. IJSEM 2018;68, 1333-1343. Doi: 10.1099/ijsem.0.002675
33. Cho WY, Ng JF Wei, Yap WH, Goh BH Sophorolipids—Bio-based antimicrobial formulating agents for applications in food and health. Molecules. 2022;27: 5556. Doi: 10.3390/molecules27175556
34. Vit P, Bankova V, Wang Z. (2024). Bibliometric landscaping of the yeast Starmerella (Ascomycota), a genus proposed in 1998. pp. 115-137. In P Vit, V Bankova, M Popova, DW Roubik (Eds.), Stingless Bee Nest Cerumen and Propolis. Vol 2, (1-505) pp. Springer Nature.
35. WHO. 2021 Antibacterial agents in clinical and preclinical development: an overview and analysis. Geneva: World Health Organization; 2022.
https://www.who.int/publications/i/item/9789240047655
36. Vit P, Meccia G. (2024). Memorias del 2024 Taller Internacional de Meliponicultura Mustafa. (pp. 1-71). APIBA-ULA. http://www.saber.ula.ve/handle/123456789/50838 Accessed July 19, 2024.