Evaluation of the Osteogenic Potential of a Three-Dimensional Bioimplant for the Treatment of Bone Defects: Innovations in bone regeneration
Main Article Content
Abstract
Introduction: Massive bone defects (MBD) represent a significant clinical challenge due to the difficulty in achieving effective bone consolidation. This study evaluates the osteogenic potential of a three-dimensional bioimplant composed of demineralized bone matrix (DBM), collagen, hydroxyapatite (HAp), and bone marrow nucleated cells in animal models.
Methods: An experimental study was performed in 45 lambs (Ovis aries) with bone defects in the proximal tibia. Three groups were compared: (1) three-dimensional bioimplant, (2) bioimplant with autologous bone marrow nucleated cells, and (3) bone allograft. Bone regeneration was assessed by radiological, histological, histochemical, and immunohistochemical analysis.
Results: The group treated with the bioimplant, and nucleated cells showed greater osteoid formation and osteoblastic activity compared to the other groups. PAS stain positivity and the presence of osteoblasts (PTHR1+) were significantly higher in this group (p<0.001).
Conclusion: The combination of a three-dimensional bioimplant with nucleated bone marrow cells significantly improves bone regeneration compared to the use of a cell-free bioimplant or an allograft, suggesting a promising alternative for the repair of massive bone defects.
Article Details
The Medical Research Archives grants authors the right to publish and reproduce the unrevised contribution in whole or in part at any time and in any form for any scholarly non-commercial purpose with the condition that all publications of the contribution include a full citation to the journal as published by the Medical Research Archives.
References
2. Sadeghzadeh H, Dianat-Moghadam H, Del Bakhshayesh AR, Mohammadnejad D, Mehdipour A. A review on the effect of nanocomposite scaffolds reinforced with magnetic nanoparticles in osteogenesis and healing of bone injuries. Stem Cell Res Ther. 2023;14(1):194. doi:10.1186/s13287-023-03426-0.
3. Ishack S, Mediero A, Wilder T, Ricci JL, Cronstein BN. Bone regeneration in critical bone defects using three-dimensionally printed β-tricalcium phosphate/hydroxyapatite scaffolds is enhanced by coating scaffolds with either dipyridamole or BMP-2. J Biomed Mater Res B Appl Biomater. 2017;105(2):366-375. doi:10.1002/jbm.b.33561.
4. Šponer P, Kučera T, Brtková J, et al. Comparative Study on the Application of Mesenchymal Stromal Cells Combined with Tricalcium Phosphate Scaffold into Femoral Bone Defects. Cell Transplant. 2018;27(10):1459-1468. doi:10.1177/0963689718794918.
5. Haines NM, Lack WD, Seymour RB, Bosse MJ. Defining the Lower Limit of a 'Critical Bone Defect' in Open Diaphyseal Tibial Fractures. J Orthop Trauma. 2016;30(5):e158-63. doi:10.1097/BOT.0000000000000531.
6. Roohani-Esfahani SI, Newman P, Zreiqat H. Design and Fabrication of 3D printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects. Sci Rep. 2016;6:19468. doi:10.1038/srep19468.
7. Cunniffe GM, Dickson GR, Partap S, Stanton KT, O'Brien FJ. Development and characterisation of a collagen nano-hydroxyapatite composite scaffold for bone tissue engineering. J Mater Sci Mater Med. 2010;21(8):2293-8. doi:10.1007/s10856-009-3964-1.
8. Sotome S, Ae K, Okawa A, et al. Efficacy and safety of porous hydroxyapatite/type 1 collagen composite implantation for bone regeneration: A randomized controlled study. J Orthop Sci. 2016;21(3):373-80. doi:10.1016/j.jos.2016.01.007.
9. Cuervo-Lozano CE, Soto-Domínguez A, Saucedo-Cárdenas O, et al. Osteogenesis induced by a three-dimensional bioimplant composed of demineralised bone matrix, collagen, hydroxyapatite, and bone marrow-derived cells in massive bone defects: An experimental study. Tissue Cell. 2018;50:69-78. doi:10.1016/j.tice.2017.12.005.
10. Percival KM, Paul V, Husseini GA. Recent Advancements in Bone Tissue Engineering: Integrating Smart Scaffold Technologies and Bio-Responsive Systems for Enhanced Regeneration. Int J Mol Sci. 2024;25(11):6012. doi:10.3390/ijms25116012.
11. Li Z, Tian Y. Role of NELlike molecule1 in osteogenesis/chondrogenesis (Review). Int J Mol Med. 2025;55(1):5. doi:10.3892/ijmm.2024.5446.
12. Roseti L, Parisi V, Petretta M, et al. Scaffolds for Bone Tissue Engineering: State of the art and new perspectives. Mater Sci Eng C Mater Biol Appl. 2017;78:1246-1262. doi:10.1016/j.msec.2017.05.017.
13. Kim HD, Amirthalingam S, Kim SL, et al. Biomimetic Materials and Fabrication Approaches for Bone Tissue Engineering. Adv Healthc Mater. 2017;6(23). doi:10.1002/adhm.201700612.
14. Zeng JH, Liu SW, Xiong L, et al. Scaffolds for the repair of bone defects in clinical studies: a systematic review. J Orthop Surg Res. 2018;13(1):33. doi:10.1186/s13018-018-0724-2.
15. Schemitsch EH. Size Matters: Defining Critical in Bone Defect Size! J Orthop Trauma. 2017;31 Suppl 5:S20-S22. doi:10.1097/BOT.0000000000000978.
16. Álvarez-Lozano E, Luna-Pizarro D, Meraz-Lares G, et al. Two-stage bone and meniscus allograft and autologous chondrocytes implant for unicompartmental osteoarthritis: midterm results. Musculoskelet Surg. 2022;106(2):133-143. doi:10.1007/s12306-020-00680-w.
17. Šponer P, Filip S, Kučera T, et al. Utilizing Autologous Multipotent Mesenchymal Stromal Cells and β-Tricalcium Phosphate Scaffold in Human Bone Defects: A Prospective, Controlled Feasibility Trial. Biomed Res Int. 2016;2016:2076061. doi:10.1155/2016/2076061.
18. Antoci, V., Phillips, M.J., Antoci Jr., V., Krackow, K.A., 2009. Using an antibiotic-im- pregnated cement rod-spacer in the treatment of infected total knee arthroplasty. Am. J. Orthop. 38, 31–33.
19. Aponte-Tinao, L.A., Ritacco, L.E., Albergo, J.I., Ayerza, M.A., Muscolo, D.L., Farfalli, G.L., 2014. The principles and applications of fresh frozen allografts to bone and joint reconstruction. Orthop. Clin. North Am. 45, 257–269.
20. Aponte-Tinao, L., Ayerza, M.A., Muscolo, D.L., Farfalli, G.L., 2015. Survival, recurrence, and function after epiphyseal preservation and allograft reconstruction in osteo- sarcoma of the knee. Clin. Orthop. Relat. Res. 473, 1789–1796.
21. Aponte-Tinao, L.A., Ayerza, M.A., Muscolo, D.L., Farfalli, G.L., 2016. What are the risk factors and management options for infection after reconstruction with massive bone allografts? Clin. Orthop. Relat. Res. 474, 669–673.
22. Houdek, M.T., Wagner, E.R., Stans, A.A., Shin, A.Y., Bishop, A.T., Sim, F.H., Moran, S.L., 2016. What is the outcome of allograft and intramedullary free fibula (Capanna technique) in pediatric and adolescent patients with bone tumors? Clin. Orthop. Relat. Res. 474, 660–668.
23. Rabitsch, K., Maurer-Ertl, W., Pirker-Frühauf, U., Wibmer, C., Leithner, A., 2013. Intercalary reconstructions with vascularised fibula and allograft after tumour resection in the lower limb. Sarcoma 2013, 8.
24. Arslan, H., Ozkul, E., Gem, M., Alemdar, C., Sahin, I., Kisin, B., 2015. Segmental bone loss in pediatric lower extremity fractures: indications and results of bone transport. J. Pediatr. Orthop. 35, e8–e12.
25. Bus, M.P., Dijkstra, P.D., van de Sande, M.A., Taminiau, A.H., Schreuder, H.W., Jutte, P.C., van der Geest, I.C., Schaap, G.R., Bramer, J.A., 2014. Intercalary allograft re- constructions following resection of primary bone tumors: a nationwide multicenter study. J. Bone Joint Surg. Am. 96, e26.
26. Qu, H., Guo, W., Yang, R., Tang, X., Yan, T., Li, D., Yang, Y., Zang, J., 2015. Cortical strut bone grafting and long-stem endoprosthetic reconstruction following massive bone tumour resection in the lower limb. Bone Joint J. 97B, 544–549.
27. Sevelda, F., Schuh, R., Hofstaetter, J.G., Schinhan, M., Windhager, R., Funovics, P.T., 2015. Total femur replacement after tumor resection: limb salvage usually achieved but complications and failures are common. Clin. Orthop. Relat. Res. 473, 2079–2087.
28. Maumus, M., Peyrafitte, J.A., D'Angelo, R., Fournier-Wirth, C., Bouloumie, A., Casteilla, L., Sengenes, C., Bourin, P., 2011. Native human adipose stromal cells: localization, morphology and phenotype. Int. J. Obes. 35, 1141–1153.
29. O'Brien, F.J., Harley, B.A., Waller, M.A., Yannas, I.V., Gibson, L.J., Prendergast, P.J., 2007. The effect of pore size on permeability and cell attachment in collagen scaffolds for tissue engineering. Technol. Health Care 15, 3–17.
30. Young, M.F., 2003. Bone matrix proteins: more than markers. Calcif. Tissue Int. 72, 2–4. Younger, E.M., Chapman, M.W., 1989. Morbidity at bone graft donor sites. J. Orthop. Trauma 3, 192–195.